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Abstract izing, designing and analyzing distributed systems prone
to securityattacksand defenses A new dimension is that

In a distributed system with attacks and defenses, an eco_lnternet_hostsaljd clients are °°'."”.° Iqu byselﬂs_hagents
hose interest is the local maximization of their own ben-

nomic investment in defense mechanisms aims at increasing,. L o
the degree of system protection against the attacks. W stud fits (rather than op't|m|zmg global performance). S(.)’ Itis
such investments in the selfish setting, where both attack-ChalIeng".1g to cons!der themultaneousmpact Of selfish
ers and defenders are self-interested entities. In padicu andmaliciousbehavior of Internet agents. In this work, &
we assume a reward-sharing scheme among interdependen?:trrézlgﬁft%itsgaﬁ dme?jdeelzdreasr:gerr?{?mi(g E); nodes
defenders; each defender wishes to maximize its own fair P 9 P

share of the attackers caught due to him (and possibly duean attacker (also calledvirus) is a malicious client that
to the involvement of others). targets a host to destroy. Associating attacks with nodes
Addressed in this work is the fundamental question of make sense since malicious attacks are often targeted at de-
determining thenaximumamount of protection achievable ~ Stroying individual servers. Alefenders a non-malicious
by a number of such defenders against a number of at-client modeling theantivirus softwareimplemented on a
tackers if the system is in a Nash equilibrium. As a mea- link in order to protect its two connected hosts. Associgtin
sure of system protection, we adapt the Defense-Ratio [12],defenses with edges is motivated Ngtwork Edge Secu-
which describes the expected proportion of attackers caugh "ty [8]; this is a recently proposed, distributddiewall ar-
by defenders. In a Defense-Optimal Nash equilibrium, the chitecture where antivirus software, rather than being sta-
Defense-Ratio is optimized. We discover that the answer tdtically installed and licensed at a host, is implemented by
this question depends in a quantitatively subtle way on the& distributed algorithmrunning on a specific subnetwork.
invested number of defenders. We identify graph-theoreticSUCh distributed implementations are attractive sincyg _the
thresholdsfor the number of defenders that determine the Offer to the hosts more fault-tolerance and the benefit of
possibility of optimizing a Defense-Ratio. In this vein, we Sharing the licensing costs. In this work, we focus on the
obtain, through an extensive combinatorial analysis offNas Simplest possible case where the subnetwork is jssigle

equilibria, a comprehensive collectiontéde-offresults. link; a precise understanding of the mathematical pitfaflls
attacks and defenses for this simplest case is a necessary

prerequisite to making progress for the general case.

1 Introduction Since malicious attacks aredependent each trying to
maximize the amount of harm it causes during its lifetime, it
is natural to model each attacker astaategic playemwish-

The Model and its Motivation. Safetyandsecurityhave ing to maximize the chance of escaping the antivirus soft-

traditionally been included among the key issues for the de-ware; thus, the strategy of one attacker does not (directly)

sign and operation of a distributed system. With the un- affect the profit of another. In contrast, one may consider at
precedented advent of the Internet, there is a growing-inter least three approaches for modeling the defenéEsDe-

est among thB®istributed Computingommunity in formal- fenses are not strategic at all; such an assumption would
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"Department of Computer Science, University of Cyprus, Na@Y- maximize the number of caught viruses. This is modeled
1678, Cyprus. Email{mavr oni ¢, vi ki }@s. ucy. ac. cy by assuming aingle (strategic) defender, which centrally

fFaculty of Computer Science, Electrical Engineering and hdat . . . . .
matics, University of Paderborn, 33102 Paderborn, GermangailE chooses multiple links and it has been studied in [&)

bm@ipb. de Defenses are strategic andn-cooperative




We have chosen the third approach. This choice is moti-
vated as follows:(1) In a large network, the defense poli-
cies areindependenanddecentralized Hence, it may not
be so realistic to assume thatcantralizedentity coordi-
nates all defenses(2) There are financial incentives of-
fered by hosts to heterogeneous (locally installed) defens
mechanisms on the basis effectivenes$i.e., number of
sustained attacks); for example, prices for antivirus-soft
ware may be determined on the basissefommendation
systemswhich collect data about effectiveness from scru-
tinized hosts. Such incentives induce a nateoahpetition
among the defenseq3) Think of a network ownerwho

is interested in maximizing the protection of the network

against attacks; the selfish owner has subcontracted the tas

to a set of independent, deployable agents, and tries to opti
mize the protection in order to be paid more.

We justify the assumption that defenses are non-cooperativ
by considering an intuitiveeward-sharingscheme among

the defenders. When more than one colocated defenders arey o profiles is a pure Nash equilibrium[13, 14]
extinguishing the same attacker(s), each will be rewarded ’

with thefair shareof the number of attackers caught. Thus,
each defender is a strategic player wishing to maximize its
fair share of the number of attackers caught. We assum
that there are attackers ang defenders; they are allowed
to use mixed strategies. InNash equilibrium13, 14], no
player can unilaterally increase its (expecteupfit. Mo-
tivated by thePrice of Stability[1], we study Defense-
Optimal Nash equilibria, where the ratio of the expected

— The Individual Profit of defenderD; is a function
IPp; : S — R with

1
"~ |defenderss(u)]|
R
|defenderss (v)]

where (u,v) = sp; and for each vertew ¢ V,
defenderss(v) = {D; € Np | v € sp,} Intuitively,

the defendeiD; receives thefair share of the total
number of attackers choosing each of the two end ver-
tices of the edge it chooses.

In the sequel, we will, by abuse of notation, use
IPs(A;) andIPs(D;) for IPa, (s) andIPp, (s), respec-
tively; we do so in order to emphasize reference to the
player rather than te.

Assume thatv € sp,. Then, the proportion
Prop,(D;, v) of defenderD; on vertexv in the pro-

file s is given byProp,(D;,v) =

IPo, (5) 1A | sa, = u}|

A [ sa; = v},

1
|defenderss (v)]”

if for
each playei € N, it maximizesIP;(s) over all profilest
that differ froms only with respect to the strategy of player
i; S0, a pure Nash equilibrium is a local maximizer for the

Sndividual Profit of each player. Say th&tadmits a pure

Nash equilibrium, or GG is pure, if there is a pure Nash equi-
librium for the strategic gamH,, ,(G).

A mixed strategyfor playeri € A is a probability dis-
tribution over S;; so, a mixed strategy for an attacker

number of attackers extinguished by the defenders, over thdresp., a defender) is a probability distribution over ver-

optimumv, called Defense-Ratipis as small as possible.
(Contrast this tavorst-caseequilibria and thePrice of An-
archy[6].) The very special but yet highly non-trivial case
of this model with a single defender was already introduced
in [12] and further studied in [5, 9, 10, 11].

The Game. Fix integersy > 1 andu > 1. Associated
with G is astrategic gamdl,, ,(G) onG:

e The set ofplayersis ' = NMa U Np, whereN, containsy
attackersA; andNp containsy defenderD;.
e Thestrategy sefSa, of attackerA; is V, and thestrategy set
Sp, of defendeD; is E. So, thestrategy setS of the game
isS = (XAiENASA'i) X (XDieNDSDi) =V¥ x B*.
A profile (or pure profile) is a (v + u)-tuple s
<8A1,.. ’SDM>€S'
— The Individual Profit of attackerA; is a function

IPa, : S — {0, 1} with
IPa,(s) = 0, sa; € UDJEND{SDJ}
1 ) SA; g UDJEND{SD]'}
Intuitively, when the attackeA; chooses vertex, he

receives) if it is caught by a defender; otherwise, he
receives 1.

-3 SA,,SDyy - - -

tices (resp., edges). kixed profile (or profile for short)

s = (SA,,--+,5A,,5D,,---,5D,) IS @ collection of mixed
strategies, one for each playeg; (v) is the probability that
attackerA; chooses vertex, andsp, (e) is the probability
that defendeD; chooses edge. The mixed profiles in-
duces also afExpected Individual ProfitlP;(s) for each
playeri € N, which is the expectation (according

of the Individual Profit of playei. A mixed profiles is a
Nash equilibrium[13, 14] if for each playef € A/, it max-
imizeslP;(s) over all profilest that differ froms only with
respect to the mixed strategy of playeso, a Nash equilib-
rium is a local maximizer of the Expected Individual Profit
of each player. (Note that by the celebrated Theorem of
Nash [13, 14]11, ,,(G) has at least one Nash equilibrium.)

The Defense-RatidDRg of a Nash equilibriuns is the ra-
tio of the optimal gain v of the defenders over their ex-

ected gain irs; so,DRy = ——Y_— . Clearly,
P g 2_Dienp 1Ps(Di) y

it is desirable that a Nash equilibriusrmaximizes the sum
> p,en IPs(D:), representing the total gain of all defend-
ers; equivalentlys should minimizeDRs.

Summary of Results. We are interested in the possibility
of achieving, and the complexity of computing, a Defense-



Optimal Nash equilibrium using givennumber of defend-
ers. Note that the number of defenders in this theoreti-
cal model directly translates into the real cost of purchas-
ing and installing several units of (licensed) antivirug-so
ware. So, this question addresses ¢het-effectivenessf

an economic investment in security for a distributed system
Through a comprehensive collection of results, we discover
that the answer depends in a quantitatively subtle way on the

number of defenders: There are two graph-theothtiesh-

olds,namely@ andg’'(G) — the size of aMinimum Edge

Cover(cf. Section 2, second paragraph), which determine
this possibility. (Recall that alwayj%| < G(G).)

e When eitheru < LVII or un > B'(G), there are cases
with a Defense-Optimal Nash equilibrium.

— Forp < @ we provide a combinatorial charac-
terization of graphs admitting a Defense-Optimal
Nash equilibrium (Theorem 5.3).  Roughly
speaking, these make a subclass of the class of
graphs with &ractional Perfect Matchingvhere
it is possible to partitiosomeFractional Perfect
Matching into . smaller, vertex-disjointFrac-
tional Perfect Matchings so that the total weight
(inherited from the Fractional Perfect Matching)

these can be computed in polynomial time (The-
orems 7.1 and 7.2).

e For the the middle rangz%ﬁ < p < B'(G) of val-

ues ofy, we provide a combinatorial proof that there
is no graph with a Defense-Optimal Nash equilibrium
(Theorem 6.1). This is somehow paradoxical, since
with fewerdefenders u < % , we already identi-
fied cases with a Defense-Optimal Nash equilibrium.
Since the value of the Defense-Ratio changes around

u= @ this paradox may not be wholly surprising.

For any number of defendegs it is always possible to
apply areplicationtechnique on the defenders in order
to transform a Nash equilibrium for the case of one
defender into a Nash equilibrium far > 1 defenders
(Theorem 8.2). Since a Nash equilibrium for the case
of one defender can be computed in polynomial time
[9], this implies that the same holds for the general
case as well. Whenever the original Nash equilibrium
(for u = 1) is Defense-Optimal, the resulting Nash
equilibrium (for x> 1) may get arbitrarily close to
(but neverbe) a Defense-Optimal Nash equilibrium.
We propose this technique as a compensation for the
cases with no Defense-Optimal Nash equilibria.

V] Related Work. We emphasize that the assumption of

in each part is the samgand equal to 2u>

1 > 1 defenders has required a far more challenging com-

We prove that the recognition problem for this pinatorial and graph-theoretic analysis than for the case
subclass, a previously unconsidered, combinato- of one defender studied in [5, 9, 10, 11, 12]. Hence,
rial problem inFractional Graph Theory15],is  we view our work as amajor generalization of the work
N'P-complete (Proposition 5.7). Hence, the de- jn [5, 9, 10, 11, 12] towards the more realistic casg of 1
cision problem for the existence of a Defense- defenders. The notion of Defense-Ratio generalizes a-corre
Optimal Nash equilibrium is\"P-complete as  sponding definition from [9] to the case of> 1 defenders.

well <fow < V) (Corollary 5.8). A fur-  The special case wheye= 1 of Theorem 5.3 was shown
<5 .8). , ) . )

) ] ) ~in [10]. (Note that this special case allowed for a polyno
ther interesting consequence of the combinatorial mg| time algorithm to decide the existence of and compute
characterization for 1 < @ is thatif thereis @ Defense-Optimal Nash equilibrium.)

a Defense-Optimal Nash equilibrium, therdi- Due to page constraints, most proofs have been omitted,;
vides|V| (Corollary 5.4). they may be found in the full version of this paper available

On the positive side, we identify a more re-
stricted subclass of graphs (within the class

athttp://ww. cs. ucy. ac. cy/ ~mavroni c/ .

of graphs with a Fractional Perfect Matching), 2 Background and Preliminaries

namely those with erfect Matchingthat admit

a Defense-Optimal Nash equilibrium in certain,
well-characterized and polynomial time recog-
nizable cases (Theorem 5.9).

Graph Theory. For an integem > 1, denote[n] =
{1,...,n}. Throughout, we consider a simple undirected
graphG = (V, E) (with no isolated vertices). We will

— When there arep > ['(G) defenders, we sometimes model an edge as the set of its two end ver-
identify two cases where there are Defense- tices. For a vertex séf C V, denote ag7(U) the sub-
Optimal Nash equilibria with some special struc- graph ofG induced byU. For an edge sef’ C F, de-
ture (namely, thebalanced Nash equilibria); note asG/(F) the subgraph ofy induced byF’; denote as



Verticesg(F) = {v € V| (u,v) € F forsomeu € V}.

A componenbdf G is a maximal connected subgraph of it.
Denote asd;(u) the degreeof vertexw in G. An edge
(u,v) € E is pendantf dg(u) =1 butdg(v) > 1.

equivalent Fractional Perfect Matching’ C f such that
any odd cycle in the grap&'(E) is a component of’.

To prove Propositions 2.1 and 2.2, we present and analyze
two algorithms:

A Vertex Covelis a vertex set/C' C V such that for each
edge(u,v) € E eitheru € VC orv € V(C; aMini-

mum Vertex Coveis one that has minimum size (denoted
asf(@G)). An Edge Coveis an edge sebC' C E such that
for each vertex € V, there is an edgeu, v) € EC; aMin-
imum Edge Coves one that has minimum size (denoted as
B'(G)). Denote a€C(G) the set of all Edge Covers ¢f.

A Matchingis a setM C FE of non-incident edges; Max-
imum Matchingis one that has maximum size. The first
polynomial time algorithm to compute a Maximum Match-
ing appears in [3]. It is known that computing a Mini-
mum Edge Cover reduces to computing a Maximum Match-
ing. (See, e.g., [16, Theorem 3.1.22].) Rerfect Match-

ing is a Matching that is also an Edge Cover; so, a Perfect

Matching has sizég—‘. A Fractional Matchingis a func-
tion f : E — [0,1] such that for each vertex € V,

Algorithm EliminateEvenCycles

INPUT: A graphG(V, E) with a Fractional Matching.
OuTPUT: An equivalent Fractional Matching’ C f for G
such thatG(E/+) has no even cycle.

While G(Ey) has an even cyclé do:
(1) Choose an edg& € E(C) such that
f(eo) = mineeg(c) f(e)-
(2) Define a functiory : E(C) — {—1,0,+1} with g(e) =
+1lor — 1 alternately, starting witlg(eo) = —1.

(3) Foreachedge € F, set
f/(e) = { f(@) + g(e) : f(60)>

f(€)7
(4) Setf :=f.

if e € E(C)
if e ¢ £(C)

ZE‘U@ fle) < 1. (Matching is the special case where
f(e) € {0,1} for each edgee € E.) For a Fractional
Matching f, denote a¥; = {e € E' | f(e) > 0}. AFrac-
tional Maximum Matching is a Fractional Matchirfgsuch
that) " . f(e) is maximum over all Fractional Matchings.
A Fractional Edge Minimal Matching is a Fractional Match-
ing f such that E;| is minimum over all Fractional Match-
ings. AFractional Perfect Matchings a Fractional Match-
ing f with >°,,c. f(e) = 1 for all verticesv € V. It

is known that the class of graphs with a Fractional Perfect
Matching is recognizable in polynomial time. (See [2] for
an efficient combinatorial algorithm.) The same holds for
the corresponding search problem.

We prove that for a Fractional Perfect Matchifighe graph
G(Ey) has no pendant edges. This implies that each com-
ponent of the grapli*(E,) is either a single edge or a sub-
graph without pendant edges. Given two Fractional Match-
ings f and f/, write that f* C f (f' C f)if Ey C E;

(B4 C Ey). Say that two Fractional Matchingsand f

are equivalentif for each vertexv € V, - . f'(e)
> ejvee f(€). We present two reduction techniques for the
simplification of Fractional (Perfect) Matchings. We prove

Proposition 2.1 There is a polynomial time algorithm to
transform a Fractional Matching’ for a graph G into an
equivalent Fractional Matching” C f for G such that
G(Ey) has no even cycle.

Proposition 2.2 Consider a Fractional Perfect Matchinfy
for a graph G such thatG(E/) has no even cycle. Then,
there is a polynomial time algorithm to transforfrinto an

Algorithm IsolateOddCycles

INPUT: A graphG(V, E) and a Fractional Perfect Matchirfg
for G such thatG(Ey) has no even cycles.

OuTPUT: An equivalent Fractional Perfect Matchirfg C f
for G such that any odd cycle i@(Ey-) is a component.

While G(Ey) has an odd cycl€ that is not a componeio:

(1) Take any vertexo € V(C) with dg ;) (vo) > 3 and
an edgezo = (vo, v1) € Ef with v, € V(C).
(2) While E(C)U{eo} C Ey do:
(2/a) Find a DFS pathi, v, - - -
forsomel, 1 <[l <r—1.
(2/b) Define a functiory : E(C) U {(vi,vi+1) | 0 <

i<r—1} — {+1, ~1,+3, —%} so that

, U With v, = vy

(+1or —1 (alternatily, starting with— 1),
if e= (7_)7;,1)7;4»1) with 0 S 7 Sl* 1
+% or — % (alternatily, starting with+ %),
if e € E(C)
+% or — % (alternatily, starting with

—sgn(g(vi—1,v1)),
L if e = (vi,vip1)Withli <i<r—1

(2/c) Finde' that realizesnin{mino<i<i—1,f((vi, vit1))
2mincepe) f(e), 2min<i<r—1 f((vi,vit1))}-

(2/d) If g(e') > 0then sey := —g.

(2/e) Foreachedge € F, set

f(e) +g(e) - min {mino<i<i—1 f((vi, vit1)),
2mincep(cy f(e),2min<i<r—1 f((vi,vit1))},
if ec E(C)U{(vi,vit1) | 0<i<r—1}
f(e), otherwise
@/ Setf = f'.

f'(e) =




Propositions 2.1 and 2.2 are reminiscent to (but different Denote asMinHits = min,cy Ps(Hit(v)), the Minimum
than) some results about Fractional Matchings from [15, Hitting Probability associated witls. Denote asvPg(v)

Theorem 2.1.5]. Specifically, it is shown in [15, Theo-
rem 2.1.5] that for every Fractional Maximum Matchilfig
that is also Minimal i) G(E) has no even cycle, and
every odd cycle inG(Ey) is a component. Propertied (

and {i) imply that the corresponding, naturally defined de-

cision problems about Fractional Maximum and Minimal

Matchings are both trivial. In contrast, the corresponding
decision problems about Fractional Perfect Matchings are

non-trivial since there are Fractional Perfect Matchirfgs

such that7(E) has an even cycle, and there are ones such
thatG(Ey) has an odd cycle that is not a component. (Note
that the classes of Fractional Perfect Matchings and Frac-

tional Maximum and Minimal Matchings ar@compara-
ble.) Propositions 2.1 and 2.2 establish tisetirch prob-

the expected number of attackers choosing vertdac-
cording tos); so, VPs(v) = >, sa,(v). For an edge
e = (u,v) € E,VPgs(e) = VPs(u) + VPs(v). We observe:

Lemma 3.3 For a profiles, MinHitg < |27“|

e Induced bys is also theConditional Expected In-
dividual Profit IP(A;,v) of attackerA; € Na on
vertex v, which is the conditional expectation (ac-
cording tos) of the Individual Profit of attackeA;
had he chosen vertex. So, IPs(A;,v) = 1 —
Ps(Hit(v)). Then, the Expected Individual Profit
IPs(A;) is IPs(A;) = >, cy sa.(v) - IPs(Ag,v) =
S ev sa.(v) - (1 — Pa(Hit())).

lemscorresponding to these decision problems are solvable

in polynomial time. We note that the proofs for Proposi-

tions 2.1 and 2.2 have been inspired by those for [15, The-

orem 2.1.5].

3 Framework

Fix now a mixed profiles. The supportof playeri € N

in the profiles, denoted a$upport,(7), is the set of pure
strategies inS; to which i assigns strictly positive proba-
bility. Denote asSupports (A) = Un,en, Supports(A:);
denote asupportsy(D) = Up,cn;, Supports(Di). A ver-
tex v is multidefenderin the profiles if [{D; € Np |
there is an edge € Support,(D;) such that € e}| > 2;
that is, a multidefender vertex is “hit” by more than one
defenders. Else, the vertexs unidefender A profile s is
unidefenderif every vertexv € V' is unidefender irs.

A mixed profiles induces a probability measul® in the
natural way. Fix a vertex € V and an edge € E. For a
defenderD;, denote adit(D;, v) the event that defender
D; chooses an edge incident to vertexDenote adit(v)

the event that some defender chooses an edge incident to

vertexv. Clearly, Hit(v) = Up, s, Hit(Di,v). Hence,
by the Principle of Inclusion-ExclusionPs(Hit(v)) =

el ("D T Xpen pi=i Hb,ep Ps (Hit(Dy, v)) -
From this expression, we immediately observe:

Lemma 3.1 Assume that vertex is multidefender ins.
Then,Ps(Hit(v)) < ZDieND Ps(Hit(D;,v)) .

Avertexv € V is maxhitin the profiles if Ps(Hit(v)) = 1;
a defendeD; € Np is amaxhitterin s if there is an edge
e € Support,(D;) such thatPs(Hit(D;,v)) = 1 for some
vertexv € e. We prove:

Lemma 3.2 For a profiles, >, ., Ps(Hit(v)) < 2 pu. (and
< 2y if there is a multidefender vertex).

e TheConditional Expected ProportiofProp,(D;, v) of
defenderD; € Ap on vertexv is his conditional ex-
pected proportion on vertex had he chosen an edge
incident to vertex:

Prop,(D;, v)
1 .
= Yjetml j 2pcap\o;}[pl=i—1 IIp,en Ps(Hit(Dx, v))
HDkQ’Du{Di}(l — Ps(Hit(Dg, v)))

1 ji—1
= Zjerm § VT Xpcap\ioiiipi=i—t
Tlo, cp Ps (Hit(Di, ).

e The Conditional Expected Individual Profit
IPs(D;, v) of defenderD,; on edgee = (u,v) € E

is the conditional expectation (according to
s) of the Individual Profit of defenderD;
had he chosen edge. So, IPs(D;,e) =

Props(Di,u) - VPs(u) + Propg(Di,v) - VPs(v).
Then, the Expected Individual ProfiPs(D;) of
defendeD; takes a particularly simple form:

IPs(D:) = ) Ps(Hit(Di,v)) - Propy(Di,v) - VPs(v) .
veV

Lemma 3.4 Fix a mixed profiles. Then, for anyv € V,
Ps(Hit(v)) = > p cnr, Ps(Hit(Di, v)) - Propg(Di, v) .

Clearly, in a Nash equilibriuns, for each attacked;,
IPs(A;,v) is constantover all verticesy € Support,(A;);
for each defendeb,, IPs(D;, ¢) is constantover all edges
e € Support,(D;). It follows that in a Nash equilib-
rium s, for each attackeA;, IPs(A;) = 1 — Ps(Hit(v))
for any vertexv € Supportg(A;); for each defendeb;,
IPs(D;) = Propg(D;, u) - VPs(u) + Propg(D;, v) - VPs(v) ,
for any edgee = (u,v) € Supports(D;). Hence, for
each attackeA;, Ps(Hit(v)) is constantover all vertices
v € Supportg(A;).



Some notation. Set Edges_(v) = {(u,v) € F | (u
€ Supportg(D)}. For an edge setF
E, set \Verticess(F) {u € Supports,(A)
| (u,v) € F for somev € V}.

)
c

Some special profiles. A profile s is uniform if each
player uses aniformprobability distribution on its support;
so, for each attackek;, for each vertex € Support,(A;),

sa, (v) = m, and for <1aach defenddd,, for
.each edge € E, sD.i(e) = Support.(D;)] :
is attacker symmetri¢resp.,defender symmetricif for all
pairs of attackeré; andA, (resp., all pairs of defendek;
andDy) for all verticesv € V, (resp., all edges € E)

sa; (v) = sa, (v) (resp.,sp, (v) = sp, (v)). A profile isat-
tacker symmetric uniform(resp.,defender symmetric uni-
form) if it is attacker symmetric (resp., defender symmetric)

. A profile s

and each attacker (resp., defender) uses a uniform prebabil

ity distribution on his support. A profile iattacker fully
mixed (resp.,defender fully mixed if for each attackeA;
(resp., for each defenddy;), Support,(A;) = V (resp.,
Support,(D;) = V).

4 The Structure of Nash Equilibria

We provide an extensive combinatorial analysis of Nash
equilibria. We first prove:

Proposition 4.1 (Characterization of Nash Equilibria)
A profiles is a Nash equilibrium if and only if the following
conditions hold:

(1) For each vertexv € Supportsg(A), Ps(Hit(v))
MinHits.

(2) For each defenderD;, for each edge(u,v)
Support¢(D;),

€

Prop, (D, v) VPs(v) + Propg(D;, u) VPs(u) =
max(y’ /)eg {Propg(Di, v") VPs(v') + Prop,(Ds, u’) VPs(u')}

Corollary 4.3 In a Nash equilibriuns, DRg = MinHit, -
Corollary 4.3 implies thaDRg > 1. Furthermore, we ob-
serve:

Lemma 4.4 For a Nash equilibriuns, DRy > %

We are now ready to provide a significant definition:

Definition 4.1 A Nash equilibriuns is Defense-Optimalf
DRs = max{l, V]

)
2u (-

We will later construct Defense-Optimal Nash equilibria;
14|
2u
and this will justify our definition of Defense-Optimal Nash
equilibria. Say thatG admits aDefense-Optimal Nash
equilibirum or thatG is Defense-Optima(with respect to
the particular parameter) if there is a Defense-Optimal
Nash equilibrium for the strategic ganié, ,(G). This
leads to the formulation of a natural decision problem:

so,max < 1, is atight lower bound on Defense-Ratio,

DEFENSE OPTIMAL GRAPH
INSTANCE A graphG = (V, E) and an integef..
QUESTION: Is G Defense-Optimal (with respect 19?

We continue to prove:

Proposition 4.5 In a Nash equilibriurs, Supports, (D) is
an Edge Cover, andupports,(A) is a Vertex Cover of
G (Supportsg(D)).

We use Propositions 4.5 and 4.5 to prove:

Proposition 4.6 (Necessary Condition for Pure Nash
Equilibria) Assume tha7 is pure. Theny > 3/(G) and
v > mingeegc(a) B(G(EC)).

We finally prove:

Proposition 4.7 A Defender Pure Nash equilibrium is
Defense-Optimal.

We remark that Proposition 4.1 generalizes a correspond5 Few Defenders

ing characterization of Nash equilibria fok, ; (G) shown
in [12], where Condition(2) had the simpler counter-
part: (2') For each edge € Supports (D), VPs(e) =
max. g {VPs(e’)}. We continue to prove:

Proposition 4.2 In a Nash
Z:DieND IPs(D;) = v - MinHits.

equilibrium s,

By the definition of Defense-Ratio, Proposition 4.2 imme-
diately implies:

We consider the case d&éw defenders wherg < o
There, a Defense-Optimal Nash equilibrisgnhasDRg =

max{l,'v| 14

T 5. We start with a structural property

2u
of Defense-Optimal Nash equilibria:

Proposition 5.1 Assume that: < @ Then, a Defense-

Optimal Nash equilibrium is unidefender.



Characterization of Defense-Optimal Graphs. We con-
tinue with a new graph-theoretic definition.

Definition 5.1 Fix an integery > 1. A Fractional Perfect
Matching f : E — R is p-partitionableif the edge sels
can be partitioned int@. non-empty, vertex-disjoint subsets

Ey,---, By, sothatforeach subsél;, ) ., f(e) = %
Note that fory = 1, the existence problem for &

partitionable Fractional Perfect Matching is triviallyetbne
for a Fractional Perfect Matching, which can be solved in
polynomial time [2]. We observe a preliminary property of
u-partitionable Fractional Perfect Matchings:

Lemma 5.2 Assume thatz has a p-paritionable Frac-
tional Perfect Matching. Then, divides|V|.

We prove a characterization of Defense-Optimal graphs:

Theorem 5.3 Assume thap < L‘}l Then, a graphG
is Defense-Optimal if and only & has au-partitionable
Fractional Perfect Matching.

Theorem 5.3 immediately implies:

Corollary 5.4 For o < M, assume that7 is Defense-

Optimal. Theny divides|V|.

Complexity of Defense-Optimal Graphs. By Theo-

rem 5.3, the complexity of recognizing Defense-Optimal
graphs is that of the following, previously unconsidered
combinatorial problem from Fractional Graph Theory [15]:

u-PARTITIONABLE
MATCHING
INSTANCE A graphG = (V, E') and an integer such that
w divides|V|.

QUESTION: Is there apu-partitionable Fractional Perfect
Matching forG?

FRACTIONAL PERFECT

The restriction to instances for whighdivides|V| is mo-
tivated from Lemma 5.2 to restrict to the set of interesting
instances. We use Propositions 2.1 and 2.2 to prove:

Proposition 5.5 Assume thatG has a p-partitionable
Fractional Perfect Matchingf. Then, it also has au-
partitionable Fractional Perfect Matchingf’ such that

G(E;) consists only of single edges and odd cycles. Fur-

thermore,f’ can be computed frorfiin polynomial time.

We are now ready to prove:

Proposition 5.6 A graph G has a u-partitionable Frac-
tional Perfect Matching if and only if® can be parti-
tioned into a collection&y,--- , E, of x vertex-disjoint
subsets and corresponding vertex sgts-- -, V,,, so that
Uie[u] V; = V, eachF; is a collection of single edges and
V]

Lt wherei € [u].

odd cycles, andlV;| = 7

We shall show an interesting relation of the problem of de-
ciding the existence of a-partitionable Fractional Perfect
Matching to a well known graph-theoretic problem:

PARTITION INTO TRIANGLES

INSTANCE: A graphG = (V, E) with |V| = 3¢ for some
integerq.

QUESTION: Can the vertices off be partitioned intg dis-
jointsetsly, - - -, Vg, each containing exactly three vertices,
such that the subgraph 6finduced by eacly; is K5?

This problem is\P-complete [4, GT11, attribution to (per-
sonal communication with) Scheafer]. To prove that
PARTITIONABLE FRACTIONAL PERFECT MATCH-
ING is N'P-complete, we consider a special case of it:

SPECIAL PARTITIONABLE FRACTIONAL PERFECT
MATCHING

INSTANCE: A graphG = (V, E) with |[V| = 3¢ for some
integeryq.

QUESTION: Is there a@—partitionable Fractional Perfect
Matching forG?

Proposition 5.7 SPECIAL PARTITIONABLE FRAC-
TIONAL PERFECT MATCHING = PARTITION INTO
TRIANGLES

Proposition 5.7 gives thatSPECIAL PARTITION-
ABLE FRACTIONAL PERFECT MATCHING is NP-
complete. SinceSPECIAL PARTITIONABLE FRAC-
TIONAL PERFECT MATCHING is a special case qi-
PARTITIONABLE FRACTIONAL PERFECT MATCH-
ING, we get thatu-PARTITIONABLE FRACTIONAL
PERFECT MATCHING is N"P-complete as well. Hence,
Theorem 5.3 implies:

Corollary 5.8 Assume that < val Then, the recognition
problem for Defense-Optimal graphsA§P-complete.



Graphs with Perfect Matchings. We now restrict to
graphs with Perfect Matchings. We show:

Theorem 5.9 Consider a graphGG with a Perfect Match-

ing and an integep < @ Then,G admits a Defense-
Optimal Nash equilibriuns whereSupport, (D) is a Perfect
Matching if and only i2 i divides|V/|.

Theorem 5.9 will follow from Propositions 5.10 and 5.11.

Proposition 5.10 Assume a graply with a Perfect Match-

ing and an integep, < 14 N | such tha® y divides|V|. Then,
G admits a Defense-Optimal Nash equilibrismwhere
Supports, (D) is a Perfect Matching.

Proof: Consider a Perfect Matchiny. Construct a pro-
file s as follows:

e s is Attacker Symmetric Uniform and Attacker Fully
Mixed. So, for each attackey; € N,, for each vertex
vEV, sa, (V) = 2 v andVPs(v) = ﬁ

e Partition M into i subsets, each Wit% edges; each

defender uses a uniform probability distribution over
each one subset. ThuSupport (D) = M and each
edge is unidefender i

We now establish Conditiond) and(2) in the characteri-
zation of Nash equilibria (Proposition 4.1).

e For Condition(1), fix any vertexv € V. Since M
is a (Perfect) Matching, there is a single edgec
Edges,(v). Sincee is unidefender (say by defender
D,), it follows that Ps(Hit(v)) = Ps(Hit(D;,v)) =
%Vi\' Now, Condition(1) follows trivially.

e For Condition(2), consider any defenddéd; € Ap.
Fix an edges = (u,v) € Supporty(D;). Since each
edgee is unidefender, it follows thaProp,(D;, v) =
Props(D;,u) = 1. It follows that Propg(D;,v) -

VP (v) + Prop,(D;, u) - VP(u) = |2VV| On the other
hand, fix any edge’ = (v',u’) & Support(D;).
Since M is an Edge Cover, it follows that for the
vertex v’ (resp., vertexu’), there is a defendeb,
such thaty’ € Vertices(Support,(D;)) (resp.,u’ €
Vertices(Support,(D;))). (Note thatD; # D, since
M is a Matching.) It follows thaProp,(D;,v’") < 1
(resp., Propg(D;,v') < 1). Thus, Propg(D;,v') -
VPs(v') + PropS(D“u’) VPs(u') < VPs(v') +
VPg(u') = . Now, Condition(2) follows.

Hence, by Proposition 4.1 is a Nash equilibrium. To
prove thats is Defense- Optimal recall that for each ver-

texv € V, Ps(Hit(v)) = |V\ Hence MinHits = \V| By

Corollary 4.3, it follows thaDRg = % [ ]

Proposition 5.11 Assume a graplr with a Perfect Match-

ing and an integep < | 2' such thatG admits a Defense-
Optimal Nash equilibriums whereSupports, (D) is a Per-
fect Matching. Therg u divides|V|.

Proof: Consider such a Nash equilibriuga Sinces is
Defense-Optimal, Corollary 4.3 implies thdinHits =

%. Consider any edge = (u,v) € Support,(D);
so, e € Supporty(D;) for some defenderD; €
Np. SinceSupport,(A) is a vertex Cover of the graph

G(Support, (D)), it follows thatv € Support,(A) or u €
Support,(A) (or both). SinceSupport (D) is a Perfect
Matching (and therefore an Edge Cover), there is at least
one defendeD;, such thatv € Verticess(Supports(Dy)).
Since s is Defense-Optimal, Proposition 5.1 implies
that there is at most one defendBy, such thatv €
Verticess (Support(Dg)). It follows that there is exactly
one defendeD;, such thatv € Verticess(Supportg(Dy)).

So, clearlyD;, isD;. SinceSupport, (D) is a Perfect Match-
ing, this implies thatPs(Hit(v)) = sp,(e). We prove that

|Support,(D;)| = %' Since|Support,(D;)| is an integer,
this implies tha® . divides|V|. [

Note that Corollary 5.4 applies @l graphs, while Propo-
sition 5.11 applies only to graphs with a Perfect Matching.
However, the restriction of Corollary 5.4 to graphs with a
Perfect Matching doesot imply Proposition 5.1lunlessu

is odd. (This is because divides |V| and ;. divides |V|
imply together tha2p divides|V'| exactly wher is odd.)

6 Many Defenders

We now consider the case wfanydefenders, Wheriz‘?i| <
u < B'(G). Note that in this case, a Defense-Optimal Nash

equilibrium has Defense-RatidRs; = max {1, |2VM|} =1.

Theorem 6.1 (Non-existence of Defense-Optimal)

Assume that@ < p < B(G). Then,G admits no
Defense-Optimal Nash equilibrium.



Proof: Assume, by way of contradiction, th&t admits a
Defense-Optimal Nash equilibriusm So,DRg = 1. Corol-
lary 4.3 implies thatMinHitg = 1. It follows that for each
vertexv € V, Ps(Hit(v)) = 1; so, all vertices are maxhit.
So, fix a (maxhit) vertex € V. The expression

Po(Hit(v)) = (=1)77" Y [T Ps (Hita(Dx, v))

S DCAb||D|=j DreD

implies that there is at least one maxhitier € Np (a de-
fenderD; such thatPs(Hit(D;,v)) = 1). There are two
cases for each maxhittdd;: (i) D; uses a pure strategy
(u,v), so that there are two verticesv € Support,(D;)
such thatPs(Hit(D;,v)) = Ps(Hit(D;,uw)) = 1, or (i)
D; uses a mixed strategy, in which case there isira
gle vertexv € Support,(D;) such thatPs(Hit(D;,v)) =
Ps(Hit(D;,u)) = 1.

Use s to construct a defender-pure profiteas fol-
lows: The pure strategy of each (multihitter or not) de-
fender Dy, is some edge fronSupport,(Dy). Note that,
by construction oft, (1) Support,(D) < u, and(2) the
number of maxhit vertices is is at most the number of
maxhit vertices int. Sinceyx < (@), (1) implies that
|Supports, (D)| < 5/(G). So, there is some vertexe V
such thatP(Hit(v)) = 0. It follows that the number of
maxhit vertices int is at most|V| — 1. By (2), it follows
that the number of maxhit vertices énis at mostV| — 1.
A contradiction. [

7 Too Many Defenders

We finally turn to the case dbo manydefenders, where
@ > 3 (G). Note that, in this case, a Defense-Optimal Nash

equilibriums has Defense-RatiDRs = max {1 VI }
<

max{l, V] } =1 (since‘g‘ < p'(G) for every

"2
20'(G) 'z

graph G). For the analysis, we will use a special class of
profiles that we introduce. A profile is balancedif there

is a constant > 0 such that for each pair of a defender
D; € Np and a vertex € V, Propg(D;, v) - VPs(v) = c.

Clearly, in a balanced profil€}) for each defended; and
each vertexw € V, Prop,(D;,v) > 0; and(ii) for each ver-
texv € V,VPg(v) > 0. From(i), it follows that the support

<

mixedbalanced profiles for the general case. So, we fo-
cused on the special case of pure strategieddefender-
pure balancedprofile is a defender-pure profiesuch that
there is a constant > 0 such that for each vertex € V,

VPs(v) ) ]
defenderss(0) c. We prove that that a defender-pure bal

anced profile is a local maximizer for the Individual Profit
of each defender.

We will present polynomial time algorithms to compute
Defender-Pure Balanced Nash equilibria in two cases. Both
algorithms will rely on a polynomial time algorithm for
computing a Minimum Edge Cover.

Defender-Pure Balanced Nash Equilibria. We show:

Theorem 7.1 Assume that, > §/(G). Then,G admits a
Defense-Optimal, Defender-Pure Nash equilibrium, which
can be computed in polynomial time.

To prove Theorem 7.1, we present a polynomial time
algorithm Defender-Pure&BalancedNE to compute a
Defender-Pure Balanced Nash equilibrium:

Algorithm Defender-Pure&BalancedNE
INPUT: A graphG(V, E) and a pair of integers and n such
that3'(G) < p.
OuTPUT: A Defender-Pure Balanced Nash equilibrism
(1) Compute a Minimum Edge CovéfC' = {(v;,u;) | @ €
[8'(@)]}-
(2) For eachi
U, modﬁ'(c))'
(3) Compute a solutiofVP(v;) | ¢ € [|V]]} to the following
linear system:

c ['u,], set sp, = (Ui mod s’ (a)>

. VP(’U-L)
(@ For eachi € [|V]], defenders, (0]
VP(’Ul) . _
defenders. (1) ® Lieqvyy VPs(vi) = v-

(4) Arbitrarily, assign probability distributions to the attacke
so that for each; € V, VPs(v;) = VP(v;).

rs

Pure Balanced Nash Equilibria. We now prove that
adding a further constraint to those in Theorem 7.1 allows
for a (Defense-OptimalPure Nash equilibrium.

of each defender is an Edge Cover; note that this (necessary)

condition isstrongerthan the necessary condition in Propo-
sition 4.5. Fron(ii), it follows that the supports of attack-
ers isV; note that this (necessary) conditiorweakerthan
the condition in the definition of an attacker fully mixed
profile. Note also that by definition, a balanced profile sat-
isfies Condition(2) in the characterization of Nash equi-

Theorem 7.2 Assume that, > §'(G) and 2 i divideswv.
Then,G admits a Defense-Optimal, Pure Nash equilibrium,
which can be computed in polynomial time.

To prove Theorem 7.2, we present a polynomial time algo-
rithm Defender-Pure&Balanced to compute a Pure Bal-

libria (Proposition 4.1). We have been unable to construct anced Nash equilibrium:



Algorithm Pure&BalancedNE

INPUT: A graph G(V, E) and integersy and v such that

B'(G) < pandy =0 (modp).

OuTpPUT: A Pure Balanced Nash equilibrius

(1) Compute a Minimum Edge CovéfC = {(v;,u;) | i €
[6'(G)]}-

(2) For eachi € [u], setsp, :=

(v, mod s’ (G)»
Uy modmc))'

for each vertex € V, VPs(v) = defenderss(v) - 57

8 Replicated Defenders

We use an involved combinatorial analysis to prove:

Proposition 8.1 Consider an arbitrary Nash equilibrium

for the gamdlI, 1 (G). Then, there is a Defender Symmetric

Nash equilibriumt for the gamdI, ,, with MinHit; = 1 —
(1 — MinHitg)~.

By Corollary 4.3, Proposition 8.1 immediately implies:

Theorem 8.2 (From Single to Symmetric Defenders)
Consider an arbitrary Nash equilibriuns for the game

IT, 1 (G). Then, there is a Defender Symmetric Nash equi-

librium t for the gamdI,, ,,(G) with Defense-Rati®R; =
1

1-(1-prg )"

Itis simple to see that in the setting of Theorem &R, >
DRs

=—s_ (This should be expected since otherwise the lower

bgund in Lemma 4.4 could be violated by choosing be

a Perfect Matching Nash equilibrium [9] féF, ; (G) with
or, - 1]
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