
How Many Attackers Can Selfish Defenders Catch?∗

Marios Mavronicolas† Burkhard Monien‡ Vicky G. Papadopoulou†

Abstract

In a distributed system with attacks and defenses, an eco-
nomic investment in defense mechanisms aims at increasing
the degree of system protection against the attacks. We study
such investments in the selfish setting, where both attack-
ers and defenders are self-interested entities. In particular,
we assume a reward-sharing scheme among interdependent
defenders; each defender wishes to maximize its own fair
share of the attackers caught due to him (and possibly due
to the involvement of others).

Addressed in this work is the fundamental question of
determining themaximumamount of protection achievable
by a number of such defenders against a number of at-
tackers if the system is in a Nash equilibrium. As a mea-
sure of system protection, we adapt the Defense-Ratio [12],
which describes the expected proportion of attackers caught
by defenders. In a Defense-Optimal Nash equilibrium, the
Defense-Ratio is optimized. We discover that the answer to
this question depends in a quantitatively subtle way on the
invested number of defenders. We identify graph-theoretic
thresholdsfor the number of defenders that determine the
possibility of optimizing a Defense-Ratio. In this vein, we
obtain, through an extensive combinatorial analysis of Nash
equilibria, a comprehensive collection oftrade-offresults.

1 Introduction

The Model and its Motivation. Safetyandsecurityhave
traditionally been included among the key issues for the de-
sign and operation of a distributed system. With the un-
precedented advent of the Internet, there is a growing inter-
est among theDistributed Computingcommunity in formal-
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izing, designing and analyzing distributed systems prone
to securityattacksanddefenses. A new dimension is that
Internethostsand clients are controlled byselfishagents
whose interest is the local maximization of their own ben-
efits (rather than optimizing global performance). So, it is
challenging to consider thesimultaneousimpact of selfish
andmaliciousbehavior of Internet agents. In this work, a
distributed system is modeled as a graphG = (V,E); nodes
represent thehostsand edges represent thelinks.

An attacker (also calledvirus) is a malicious client that
targets a host to destroy. Associating attacks with nodes
make sense since malicious attacks are often targeted at de-
stroying individual servers. Adefenderis a non-malicious
client modeling theantivirus softwareimplemented on a
link in order to protect its two connected hosts. Associating
defenses with edges is motivated byNetwork Edge Secu-
rity [8]; this is a recently proposed, distributed,firewall ar-
chitecture, where antivirus software, rather than being sta-
tically installed and licensed at a host, is implemented by
a distributed algorithmrunning on a specific subnetwork.
Such distributed implementations are attractive since they
offer to the hosts more fault-tolerance and the benefit of
sharing the licensing costs. In this work, we focus on the
simplest possible case where the subnetwork is just asingle
link; a precise understanding of the mathematical pitfallsof
attacks and defenses for this simplest case is a necessary
prerequisite to making progress for the general case.

Since malicious attacks areindependent, each trying to
maximize the amount of harm it causes during its lifetime, it
is natural to model each attacker as astrategic playerwish-
ing to maximize the chance of escaping the antivirus soft-
ware; thus, the strategy of one attacker does not (directly)
affect the profit of another. In contrast, one may consider at
least three approaches for modeling the defenses:(1) De-
fenses are not strategic at all; such an assumption would
lead to a (centralized) optimization problem of computing
the best locations for the defenders (given that attackers are
strategic).(2) Defenses are strategic, and theycooperateto
maximize the number of caught viruses. This is modeled
by assuming asingle (strategic) defender, which centrally
chooses multiple links and it has been studied in [5].(3)
Defenses are strategic andnon-cooperative.



We have chosen the third approach. This choice is moti-
vated as follows:(1) In a large network, the defense poli-
cies areindependentanddecentralized. Hence, it may not
be so realistic to assume that acentralizedentity coordi-
nates all defenses.(2) There are financial incentives of-
fered by hosts to heterogeneous (locally installed) defense
mechanisms on the basis ofeffectiveness(i.e., number of
sustained attacks); for example, prices for antivirus soft-
ware may be determined on the basis ofrecommendation
systems, which collect data about effectiveness from scru-
tinized hosts. Such incentives induce a naturalcompetition
among the defenses.(3) Think of a network owner, who
is interested in maximizing the protection of the network
against attacks; the selfish owner has subcontracted the task
to a set of independent, deployable agents, and tries to opti-
mize the protection in order to be paid more.

We justify the assumption that defenses are non-cooperative
by considering an intuitivereward-sharingscheme among
the defenders. When more than one colocated defenders are
extinguishing the same attacker(s), each will be rewarded
with thefair shareof the number of attackers caught. Thus,
each defender is a strategic player wishing to maximize its
fair share of the number of attackers caught. We assume
that there areν attackers andµ defenders; they are allowed
to use mixed strategies. In aNash equilibrium[13, 14], no
player can unilaterally increase its (expected)profit. Mo-
tivated by thePrice of Stability [1], we study Defense-
Optimal Nash equilibria, where the ratio of the expected
number of attackers extinguished by the defenders, over the
optimumν, calledDefense-Ratio, is as small as possible.
(Contrast this toworst-caseequilibria and thePrice of An-
archy [6].) The very special but yet highly non-trivial case
of this model with a single defender was already introduced
in [12] and further studied in [5, 9, 10, 11].

The Game. Fix integersν ≥ 1 andµ ≥ 1. Associated
with G is astrategic gameΠν,µ(G) onG:

• The set ofplayersis N = NA ∪ ND, whereNA containsν
attackersAi andND containsµ defendersDi.

• Thestrategy setSAi
of attackerAi is V , and thestrategy set

SDi
of defenderDi is E. So, thestrategy setS of the game

is S = (×Ai∈NA
SAi

) × (×Di∈ND
SDi

) = V ν × Eµ.

A profile (or pure profile) is a (ν + µ)-tuple s =
〈sA1

, . . . , sAν , sD1
, . . . , sDµ〉 ∈ S.

• – The Individual Profit of attackerAi is a function
IPAi

: S → {0, 1} with

IPAi
(s) =

(
0 , sAi

∈
S

Dj∈ND
{sDj

}

1 , sAi
6∈
S

Dj∈ND
{sDj

}

Intuitively, when the attackerAi chooses vertexv, he
receives0 if it is caught by a defender; otherwise, he
receives 1.

– The Individual Profit of defenderDj is a function
IPDj

: S → R with

IPDj
(s) =

1

|defenderss(u)|
· |{Ai | sAi

= u}|

+
1

|defenderss(v)|
· |{Ai | sAi

= v}| ,

where (u, v) = sDj
and for each vertexv ∈ V ,

defenderss(v) = {Di ∈ ND | v ∈ sDi
} Intuitively,

the defenderDj receives thefair share of the total
number of attackers choosing each of the two end ver-
tices of the edge it chooses.
In the sequel, we will, by abuse of notation, use
IPs(Ai) andIPs(Di) for IPAi

(s) andIPDi
(s), respec-

tively; we do so in order to emphasize reference to the
player rather than tos.
Assume thatv ∈ sDi

. Then, the proportion
Prop

s
(Di, v) of defenderDi on vertexv in the pro-

file s is given byProp
s
(Di, v) = 1

|defenderss(v)|
.

The profiles is a pure Nash equilibrium [13, 14] if for
each playeri ∈ N , it maximizesIPi(s) over all profilest
that differ froms only with respect to the strategy of player
i; so, a pure Nash equilibrium is a local maximizer for the
Individual Profit of each player. Say thatG admits a pure
Nash equilibrium, orG is pure, if there is a pure Nash equi-
librium for the strategic gameΠν,µ(G).

A mixed strategyfor player i ∈ N is a probability dis-
tribution over Si; so, a mixed strategy for an attacker
(resp., a defender) is a probability distribution over ver-
tices (resp., edges). Amixed profile (or profile for short)
s = 〈sA1

, . . . , sAν
, sD1

, . . . , sDµ
〉 is a collection of mixed

strategies, one for each player;sAi
(v) is the probability that

attackerAi chooses vertexv, andsDj
(e) is the probability

that defenderDj chooses edgee. The mixed profiles in-
duces also anExpected Individual ProfitIPi(s) for each
player i ∈ N , which is the expectation (according tos)
of the Individual Profit of playeri. A mixed profiles is a
Nash equilibrium[13, 14] if for each playeri ∈ N , it max-
imizesIPi(s) over all profilest that differ froms only with
respect to the mixed strategy of playeri; so, a Nash equilib-
rium is a local maximizer of the Expected Individual Profit
of each player. (Note that by the celebrated Theorem of
Nash [13, 14],Πν,µ(G) has at least one Nash equilibrium.)

TheDefense-RatioDRs of a Nash equilibriums is the ra-
tio of the optimal gain ν of the defenders over their ex-
pected gain ins; so, DRs = ν

∑

Di∈ND
IPs(Di)

. Clearly,

it is desirable that a Nash equilibriums maximizes the sum
∑

Di∈N IPs(Di), representing the total gain of all defend-
ers; equivalently,s should minimizeDRs.

Summary of Results. We are interested in the possibility
of achieving, and the complexity of computing, a Defense-



Optimal Nash equilibrium using agivennumber of defend-
ers. Note that the number of defenders in this theoreti-
cal model directly translates into the real cost of purchas-
ing and installing several units of (licensed) antivirus soft-
ware. So, this question addresses thecost-effectivenessof
an economic investment in security for a distributed system.
Through a comprehensive collection of results, we discover
that the answer depends in a quantitatively subtle way on the
number of defenders: There are two graph-theoreticthresh-

olds,namely
|V |
2 andβ′(G) – the size of aMinimum Edge

Cover(cf. Section 2, second paragraph), which determine

this possibility. (Recall that always
|V |
2 ≤ β′(G).)

• When eitherµ ≤
|V |
2 or µ ≥ β′(G), there are cases

with a Defense-Optimal Nash equilibrium.

– Forµ ≤
|V |
2 , we provide a combinatorial charac-

terization of graphs admitting a Defense-Optimal
Nash equilibrium (Theorem 5.3). Roughly
speaking, these make a subclass of the class of
graphs with aFractional Perfect Matchingwhere
it is possible to partitionsomeFractional Perfect
Matching into µ smaller, vertex-disjointFrac-
tional Perfect Matchings so that the total weight
(inherited from the Fractional Perfect Matching)

in each part is the same

(

and equal to
|V |
2µ

)

.

We prove that the recognition problem for this
subclass, a previously unconsidered, combinato-
rial problem inFractional Graph Theory[15], is
NP-complete (Proposition 5.7). Hence, the de-
cision problem for the existence of a Defense-
Optimal Nash equilibrium isNP-complete as

well

(

for µ ≤
|V |
2

)

(Corollary 5.8). A fur-

ther interesting consequence of the combinatorial

characterization

(

for µ ≤
|V |
2

)

is that if there is

a Defense-Optimal Nash equilibrium, thenµ di-
vides|V | (Corollary 5.4).

On the positive side, we identify a more re-
stricted subclass of graphs (within the class
of graphs with a Fractional Perfect Matching),
namely those with aPerfect Matching,that admit
a Defense-Optimal Nash equilibrium in certain,
well-characterized and polynomial time recog-
nizable cases (Theorem 5.9).

– When there areµ ≥ β′(G) defenders, we
identify two cases where there are Defense-
Optimal Nash equilibria with some special struc-
ture (namely, thebalanced Nash equilibria);

these can be computed in polynomial time (The-
orems 7.1 and 7.2).

• For the the middle range
|V |
2 < µ < β′(G) of val-

ues ofµ, we provide a combinatorial proof that there
is no graph with a Defense-Optimal Nash equilibrium
(Theorem 6.1). This is somehow paradoxical, since

with fewerdefenders

(

µ ≤
|V |
2

)

, we already identi-

fied cases with a Defense-Optimal Nash equilibrium.
Since the value of the Defense-Ratio changes around

µ =
|V |
2 , this paradox may not be wholly surprising.

• For any number of defendersµ, it is always possible to
apply areplicationtechnique on the defenders in order
to transform a Nash equilibrium for the case of one
defender into a Nash equilibrium forµ > 1 defenders
(Theorem 8.2). Since a Nash equilibrium for the case
of one defender can be computed in polynomial time
[9], this implies that the same holds for the general
case as well. Whenever the original Nash equilibrium
(for µ = 1) is Defense-Optimal, the resulting Nash
equilibrium (for µ > 1) may get arbitrarily close to
(but neverbe) a Defense-Optimal Nash equilibrium.
We propose this technique as a compensation for the
cases with no Defense-Optimal Nash equilibria.

Related Work. We emphasize that the assumption of
µ > 1 defenders has required a far more challenging com-
binatorial and graph-theoretic analysis than for the case
of one defender studied in [5, 9, 10, 11, 12]. Hence,
we view our work as amajor generalization of the work
in [5, 9, 10, 11, 12] towards the more realistic case ofµ > 1
defenders. The notion of Defense-Ratio generalizes a corre-
sponding definition from [9] to the case ofµ > 1 defenders.
The special case whereµ = 1 of Theorem 5.3 was shown
in [10]. (Note that this special case allowed for a polyno-
mial time algorithm to decide the existence of and compute
a Defense-Optimal Nash equilibrium.)

Due to page constraints, most proofs have been omitted;
they may be found in the full version of this paper available
athttp://www.cs.ucy.ac.cy/∼mavronic/.

2 Background and Preliminaries

Graph Theory. For an integern ≥ 1, denote[n] =
{1, . . . , n}. Throughout, we consider a simple undirected
graphG = 〈V,E〉 (with no isolated vertices). We will
sometimes model an edge as the set of its two end ver-
tices. For a vertex setU ⊆ V , denote asG(U) the sub-
graph ofG induced byU . For an edge setF ⊆ E, de-
note asG(F ) the subgraph ofG induced byF ; denote as



VerticesG(F ) = {v ∈ V | (u, v) ∈ F for someu ∈ V }.
A componentof G is a maximal connected subgraph of it.
Denote asdG(u) the degreeof vertex u in G. An edge
(u, v) ∈ E is pendantif dG(u) = 1 butdG(v) > 1.

A Vertex Coveris a vertex setV C ⊆ V such that for each
edge(u, v) ∈ E either u ∈ V C or v ∈ V C; a Mini-
mum Vertex Coveris one that has minimum size (denoted
asβ(G)). An Edge Coveris an edge setEC ⊆ E such that
for each vertexv ∈ V , there is an edge(u, v) ∈ EC; aMin-
imum Edge Coveris one that has minimum size (denoted as
β′(G)). Denote asEC(G) the set of all Edge Covers ofG.

A Matchingis a setM ⊆ E of non-incident edges; aMax-
imum Matchingis one that has maximum size. The first
polynomial time algorithm to compute a Maximum Match-
ing appears in [3]. It is known that computing a Mini-
mum Edge Cover reduces to computing a Maximum Match-
ing. (See, e.g., [16, Theorem 3.1.22].) APerfect Match-
ing is a Matching that is also an Edge Cover; so, a Perfect

Matching has size
|V |
2 . A Fractional Matchingis a func-

tion f : E → [0, 1] such that for each vertexv ∈ V ,
∑

e|v∈e f(e) ≤ 1. (Matching is the special case where
f(e) ∈ {0, 1} for each edgee ∈ E.) For a Fractional
Matchingf , denote asEf = {e ∈ E | f(e) > 0}. A Frac-
tional Maximum Matching is a Fractional Matchingf such
that

∑

e∈E f(e) is maximum over all Fractional Matchings.
A Fractional Edge Minimal Matching is a Fractional Match-
ing f such that|Ef | is minimum over all Fractional Match-
ings. AFractional Perfect Matchingis a Fractional Match-
ing f with

∑

e|v∈e f(e) = 1 for all verticesv ∈ V . It
is known that the class of graphs with a Fractional Perfect
Matching is recognizable in polynomial time. (See [2] for
an efficient combinatorial algorithm.) The same holds for
the corresponding search problem.

We prove that for a Fractional Perfect Matchingf , the graph
G(Ef ) has no pendant edges. This implies that each com-
ponent of the graphG(Ef ) is either a single edge or a sub-
graph without pendant edges. Given two Fractional Match-
ings f andf ′, write thatf ′ ⊆ f (f ′ ⊂ f ) if Ef ′ ⊆ Ef

(Ef ′ ⊂ Ef ). Say that two Fractional Matchingsf andf ′

areequivalentif for each vertexv ∈ V ,
∑

e|v∈e f ′(e) =
∑

e|v∈e f(e). We present two reduction techniques for the
simplification of Fractional (Perfect) Matchings. We prove:

Proposition 2.1 There is a polynomial time algorithm to
transform a Fractional Matchingf for a graphG into an
equivalent Fractional Matchingf ′ ⊆ f for G such that
G(Ef ′) has no even cycle.

Proposition 2.2 Consider a Fractional Perfect Matchingf
for a graphG such thatG(Ef ) has no even cycle. Then,
there is a polynomial time algorithm to transformf into an

equivalent Fractional Perfect Matchingf ′ ⊆ f such that
any odd cycle in the graphG(Ef ′) is a component off ′.

To prove Propositions 2.1 and 2.2, we present and analyze
two algorithms:

Algorithm EliminateEvenCycles
INPUT: A graphG(V, E) with a Fractional Matchingf .
OUTPUT: An equivalent Fractional Matchingf ′ ⊆ f for G

such thatG(Ef ′) has no even cycle.

While G(Ef ) has an even cycleC do:

(1) Choose an edgee0 ∈ E(C) such that
f(e0) = mine∈E(C) f(e).

(2) Define a functiong : E(C) → {−1, 0, +1} with g(e) =

+1 or − 1 alternately, starting withg(e0) = −1.

(3) For each edgee ∈ E, set

f ′(e) :=

�
f(e) + g(e) · f(e0), if e ∈ E(C)
f(e), if e 6∈ E(C)

(4) Setf := f ′.

Algorithm IsolateOddCycles
INPUT: A graphG(V, E) and a Fractional Perfect Matchingf
for G such thatG(Ef ) has no even cycles.
OUTPUT: An equivalent Fractional Perfect Matchingf ′ ⊆ f

for G such that any odd cycle inG(Ef ′) is a component.

While G(Ef ) has an odd cycleC that is not a componentdo:

(1) Take any vertexv0 ∈ V (C) with dG(Ef )(v0) ≥ 3 and

an edgee0 = (v0, v1) ∈ Ef with v1 6∈ V (C).

(2) While E(C) ∪ {e0} ⊆ Ef do:

(2/a) Find a DFS pathv1, v2, · · · , vr with vr = vl

for somel, 1 ≤ l < r − 1.

(2/b) Define a functiong : E(C) ∪ {(vi, vi+1) | 0 ≤

i ≤ r − 1} →
n

+1,−1, +1
2 ,−1

2

o
so that

g(e) =

8>>>>>>>>><>>>>>>>>>:
+1 or − 1 (alternatily, starting with− 1),

if e = (vi, vi+1) with 0 ≤ i ≤ l − 1

+1
2 or − 1

2 (alternatily, starting with+ 1
2 ),

if e ∈ E(C)

+1
2 or − 1

2 (alternatily, starting with
−sgn(g(vl−1, vl)),

if e = (vi, vi+1) with l ≤ i ≤ r − 1

(2/c) Finde′ that realizesmin{min0≤i≤l−1,f((vi, vi+1))
2mine∈E(C) f(e), 2 minl≤i≤r−1 f((vi, vi+1))

	
.

(2/d) If g(e′) > 0 then setg := −g.

(2/e) For each edgee ∈ E, set

f ′(e) :=

8>><>>:f(e) + g(e) · min {min0≤i≤l−1 f((vi, vi+1)),
2 mine∈E(C) f(e),2 minl≤i≤r−1 f((vi, vi+1))} ,

if e ∈ E(C) ∪ {(vi, vi+1) | 0 ≤ i ≤ r − 1}
f(e), otherwise

(2/f) Setf := f ′.



Propositions 2.1 and 2.2 are reminiscent to (but different
than) some results about Fractional Matchings from [15,
Theorem 2.1.5]. Specifically, it is shown in [15, Theo-
rem 2.1.5] that for every Fractional Maximum Matchingf

that is also Minimal (i) G(Ef ) has no even cycle, and (ii )
every odd cycle inG(Ef ) is a component. Properties (i)
and (ii ) imply that the corresponding, naturally defined de-
cision problems about Fractional Maximum and Minimal
Matchings are both trivial. In contrast, the corresponding
decision problems about Fractional Perfect Matchings are
non-trivial since there are Fractional Perfect Matchingsf

such thatG(Ef ) has an even cycle, and there are ones such
thatG(Ef ) has an odd cycle that is not a component. (Note
that the classes of Fractional Perfect Matchings and Frac-
tional Maximum and Minimal Matchings areincompara-
ble.) Propositions 2.1 and 2.2 establish thatsearch prob-
lemscorresponding to these decision problems are solvable
in polynomial time. We note that the proofs for Proposi-
tions 2.1 and 2.2 have been inspired by those for [15, The-
orem 2.1.5].

3 Framework

Fix now a mixed profiles. The supportof player i ∈ N
in the profiles, denoted asSupport

s
(i), is the set of pure

strategies inSi to which i assigns strictly positive proba-
bility. Denote asSupports

s
(A) =

⋃

Ai∈NA
Support

s
(Ai);

denote asSupports
s
(D) =

⋃

Di∈ND
Support

s
(Di). A ver-

tex v is multidefender in the profile s if |{Di ∈ ND |
there is an edgee ∈ Support

s
(Di) such thatv ∈ e}| ≥ 2;

that is, a multidefender vertex is “hit” by more than one
defenders. Else, the vertexv is unidefender. A profile s is
unidefenderif every vertexv ∈ V is unidefender ins.

A mixed profiles induces a probability measurePs in the
natural way. Fix a vertexv ∈ V and an edgee ∈ E. For a
defenderDi, denote asHit(Di, v) the event that defender
Di chooses an edge incident to vertexv. Denote asHit(v)
the event that some defender chooses an edge incident to
vertex v. Clearly, Hit(v) =

⋃

Di∈ND
Hit(Di, v). Hence,

by the Principle of Inclusion-Exclusion,Ps(Hit(v)) =
∑

j∈[µ](−1)j−1
∑

D⊆ND||D|=j

∏

Dk∈D Ps (Hit(Dk, v)) .
From this expression, we immediately observe:

Lemma 3.1 Assume that vertexv is multidefender ins.
Then,Ps(Hit(v)) <

∑

Di∈ND
Ps(Hit(Di, v)) .

A vertexv ∈ V is maxhit in the profiles if Ps(Hit(v)) = 1;
a defenderDi ∈ ND is amaxhitter in s if there is an edge
e ∈ Support

s
(Di) such thatPs(Hit(Di, v)) = 1 for some

vertexv ∈ e. We prove:

Lemma 3.2 For a profiles,
∑

v∈V Ps(Hit(v)) ≤ 2µ. (and
< 2µ if there is a multidefender vertex).

Denote asMinHits = minv∈V Ps(Hit(v)), the Minimum
Hitting Probability associated withs. Denote asVPs(v)
the expected number of attackers choosing vertexv (ac-
cording tos); so, VPs(v) =

∑

i∈[ν] sAi
(v) . For an edge

e = (u, v) ∈ E, VPs(e) = VPs(u) + VPs(v). We observe:

Lemma 3.3 For a profiles, MinHits ≤
2µ
|V |

.

• Induced bys is also theConditional Expected In-
dividual Profit IPs(Ai, v) of attackerAi ∈ NA on
vertex v, which is the conditional expectation (ac-
cording tos) of the Individual Profit of attackerAi

had he chosen vertexv. So, IPs(Ai, v) = 1 −
Ps(Hit(v)) . Then, the Expected Individual Profit
IPs(Ai) is IPs(Ai) =

∑

v∈V sAi
(v) · IPs(Ai, v) =

∑

v∈V sAi
(v) · (1 − Ps(Hit(v))) .

• TheConditional Expected ProportionProp
s
(Di, v) of

defenderDi ∈ ND on vertexv is his conditional ex-
pected proportion on vertexv had he chosen an edge
incident to vertexv:

Prop
s
(Di, v)

=
P

j∈[m]
1
j

P
D⊆ND\{Di}||D|=j−1

Q
Dk∈D Ps(Hit(Dk, v))Q

Dk 6∈D∪{Di}
(1 − Ps(Hit(Dk, v)))

=
P

j∈[m]
1
j

(−1)j−1 P
D⊆ND\{Di}||D|=j−1Q

Dk∈D Ps(Hit(Dk, v)) .

• The Conditional Expected Individual Profit
IPs(Di, v) of defenderDi on edgee = (u, v) ∈ E
is the conditional expectation (according to
s) of the Individual Profit of defender Di

had he chosen edgee. So, IPs(Di, e) =
Prop

s
(Di, u) · VPs(u) + Prop

s
(Di, v) · VPs(v) .

Then, the Expected Individual ProfitIPs(Di) of
defenderDi takes a particularly simple form:

IPs(Di) =
X
v∈V

Ps(Hit(Di, v)) · Prop
s
(Di, v) · VPs(v) .

Lemma 3.4 Fix a mixed profiles. Then, for anyv ∈ V ,
Ps(Hit(v)) =

∑

Di∈ND
Ps(Hit(Di, v)) · Prop

s
(Di, v) .

Clearly, in a Nash equilibriums, for each attackerAi,
IPs(Ai, v) is constantover all verticesv ∈ Support

s
(Ai);

for each defenderDi, IPs(Di, e) is constantover all edges
e ∈ Support

s
(Di). It follows that in a Nash equilib-

rium s, for each attackerAi, IPs(Ai) = 1 − Ps(Hit(v))
for any vertexv ∈ Support

s
(Ai); for each defenderDi,

IPs(Di) = Prop
s
(Di, u) ·VPs(u)+Prop

s
(Di, v) ·VPs(v) ,

for any edgee = (u, v) ∈ Support
s
(Di). Hence, for

each attackerAi, Ps(Hit(v)) is constantover all vertices
v ∈ Support

s
(Ai).



Some notation. Set Edges
s
(v) = {(u, v) ∈ E | (u, v)

∈ Support
s
(D)}. For an edge set F ⊆

E, set Verticess(F ) = {u ∈ Supports
s
(A)

| (u, v) ∈ F for somev ∈ V }.

Some special profiles. A profile s is uniform if each
player uses auniformprobability distribution on its support;
so, for each attackerAi, for each vertexv ∈ Support

s
(Ai),

sAi
(v) = 1

|Support
s
(Ai)|

, and for each defenderDi, for

each edgee ∈ E, sDi
(e) = 1

|Support
s
(Di)|

. A profile s

is attacker symmetric(resp.,defender symmetric) if for all
pairs of attackersAi andAk (resp., all pairs of defendersDi

andDk) for all verticesv ∈ V , (resp., all edgese ∈ E)
sAi

(v) = sAk
(v) (resp.,sDi

(v) = sDk
(v)). A profile isat-

tacker symmetric uniform(resp.,defender symmetric uni-
form) if it is attacker symmetric (resp., defender symmetric)
and each attacker (resp., defender) uses a uniform probabil-
ity distribution on his support. A profile isattacker fully
mixed (resp.,defender fully mixed) if for each attackerAi

(resp., for each defenderDi), Support
s
(Ai) = V (resp.,

Support
s
(Di) = V ).

4 The Structure of Nash Equilibria

We provide an extensive combinatorial analysis of Nash
equilibria. We first prove:

Proposition 4.1 (Characterization of Nash Equilibria)
A profiles is a Nash equilibrium if and only if the following
conditions hold:

(1) For each vertexv ∈ Supports
s
(A), Ps(Hit(v)) =

MinHits.

(2) For each defenderDi, for each edge(u, v) ∈
Support

s
(Di),

Prop
s
(Di, v) VPs(v) + Prop

s
(Di, u) VPs(u) =

max(u′,v′)∈E {Prop
s
(Di, v

′) VPs(v
′) + Prop

s
(Di, u

′) VPs(u
′)}

We remark that Proposition 4.1 generalizes a correspond-
ing characterization of Nash equilibria forΠν,1(G) shown
in [12], where Condition(2) had the simpler counter-
part: (2’) For each edgee ∈ Supports

s
(D), VPs(e) =

maxe′∈E {VPs(e
′)}. We continue to prove:

Proposition 4.2 In a Nash equilibrium s,
∑

Di∈ND
IPs(Di) = ν · MinHits.

By the definition of Defense-Ratio, Proposition 4.2 imme-
diately implies:

Corollary 4.3 In a Nash equilibriums, DRs = 1
MinHits

.

Corollary 4.3 implies thatDRs ≥ 1. Furthermore, we ob-
serve:

Lemma 4.4 For a Nash equilibriums, DRs ≥
|V |
2µ .

We are now ready to provide a significant definition:

Definition 4.1 A Nash equilibriums is Defense-Optimalif

DRs = max

{

1,
|V |
2µ

}

.

We will later construct Defense-Optimal Nash equilibria;

so,max

{

1,
|V |
2µ

}

is atight lower bound on Defense-Ratio,

and this will justify our definition of Defense-Optimal Nash
equilibria. Say thatG admits aDefense-Optimal Nash
equilibirum or thatG is Defense-Optimal(with respect to
the particular parameterµ) if there is a Defense-Optimal
Nash equilibrium for the strategic gameΠν,µ(G). This
leads to the formulation of a natural decision problem:

DEFENSE OPTIMAL GRAPH
INSTANCE: A graphG = 〈V,E〉 and an integerµ.
QUESTION: Is G Defense-Optimal (with respect toµ)?

We continue to prove:

Proposition 4.5 In a Nash equilibriums, Supports
s
(D) is

an Edge Cover, andSupports
s
(A) is a Vertex Cover of

G(Supports
s
(D)).

We use Propositions 4.5 and 4.5 to prove:

Proposition 4.6 (Necessary Condition for Pure Nash
Equilibria) Assume thatG is pure. Then,µ ≥ β′(G) and
ν ≥ minEC∈EC(G) β(G(EC)).

We finally prove:

Proposition 4.7 A Defender Pure Nash equilibrium is
Defense-Optimal.

5 Few Defenders

We consider the case offew defenders whereµ ≤
|V |
2 .

There, a Defense-Optimal Nash equilibriums hasDRs =

max

{

1,
|V |
2µ

}

=
|V |
2µ . We start with a structural property

of Defense-Optimal Nash equilibria:

Proposition 5.1 Assume thatµ ≤
|V |
2 . Then, a Defense-

Optimal Nash equilibrium is unidefender.



Characterization of Defense-Optimal Graphs. We con-
tinue with a new graph-theoretic definition.

Definition 5.1 Fix an integerµ ≥ 1. A Fractional Perfect
Matchingf : E → R is µ-partitionable if the edge setEf

can be partitioned intoµ non-empty, vertex-disjoint subsets

E1, · · · , Eµ so that for each subsetEi,
∑

e∈Ei
f(e) =

|V |
2µ .

Note that for µ = 1, the existence problem for a1-
partitionable Fractional Perfect Matching is trivially the one
for a Fractional Perfect Matching, which can be solved in
polynomial time [2]. We observe a preliminary property of
µ-partitionable Fractional Perfect Matchings:

Lemma 5.2 Assume thatG has a µ-paritionable Frac-
tional Perfect Matching. Then,µ divides|V |.

We prove a characterization of Defense-Optimal graphs:

Theorem 5.3 Assume thatµ ≤
|V |
2 . Then, a graphG

is Defense-Optimal if and only ifG has aµ-partitionable
Fractional Perfect Matching.

Theorem 5.3 immediately implies:

Corollary 5.4 For µ ≤
|V |
2 , assume thatG is Defense-

Optimal. Then,µ divides|V |.

Complexity of Defense-Optimal Graphs. By Theo-
rem 5.3, the complexity of recognizing Defense-Optimal
graphs is that of the following, previously unconsidered
combinatorial problem from Fractional Graph Theory [15]:

µ-PARTITIONABLE FRACTIONAL PERFECT
MATCHING
INSTANCE: A graphG = 〈V,E〉 and an integerµ such that
µ divides|V |.
QUESTION: Is there aµ-partitionable Fractional Perfect
Matching forG?

The restriction to instances for whichµ divides|V | is mo-
tivated from Lemma 5.2 to restrict to the set of interesting
instances. We use Propositions 2.1 and 2.2 to prove:

Proposition 5.5 Assume thatG has a µ-partitionable
Fractional Perfect Matchingf . Then, it also has aµ-
partitionable Fractional Perfect Matchingf ′ such that
G(Ef ′) consists only of single edges and odd cycles. Fur-
thermore,f ′ can be computed fromf in polynomial time.

We are now ready to prove:

Proposition 5.6 A graph G has a µ-partitionable Frac-
tional Perfect Matching if and only ifE can be parti-
tioned into a collectionE1, · · · , Eµ of µ vertex-disjoint
subsets and corresponding vertex setsV1, · · · , Vµ, so that
⋃

i∈[µ] Vi = V , eachEi is a collection of single edges and

odd cycles, and|Vi| =
|V |
µ , wherei ∈ [µ].

We shall show an interesting relation of the problem of de-
ciding the existence of aµ-partitionable Fractional Perfect
Matching to a well known graph-theoretic problem:

PARTITION INTO TRIANGLES
INSTANCE: A graphG = 〈V,E〉 with |V | = 3q for some
integerq.
QUESTION: Can the vertices ofG be partitioned intoq dis-
joint setsV1, · · · , Vq, each containing exactly three vertices,
such that the subgraph ofG induced by eachVi is K3?

This problem isNP-complete [4, GT11, attribution to (per-
sonal communication with) Scheafer]. To prove thatµ-
PARTITIONABLE FRACTIONAL PERFECT MATCH-
ING is NP-complete, we consider a special case of it:

SPECIAL PARTITIONABLE FRACTIONAL PERFECT
MATCHING
INSTANCE: A graphG = 〈V,E〉 with |V | = 3q for some
integerq.

QUESTION: Is there a
|V |
3 -partitionable Fractional Perfect

Matching forG?

Proposition 5.7 SPECIAL PARTITIONABLE FRAC-
TIONAL PERFECT MATCHING ≡ PARTITION INTO
TRIANGLES

Proposition 5.7 gives thatSPECIAL PARTITION-
ABLE FRACTIONAL PERFECT MATCHING is NP-
complete. SinceSPECIAL PARTITIONABLE FRAC-
TIONAL PERFECT MATCHING is a special case ofµ-
PARTITIONABLE FRACTIONAL PERFECT MATCH-
ING, we get thatµ-PARTITIONABLE FRACTIONAL
PERFECT MATCHING is NP-complete as well. Hence,
Theorem 5.3 implies:

Corollary 5.8 Assume thatµ ≤
|V |
2 . Then, the recognition

problem for Defense-Optimal graphs isNP-complete.



Graphs with Perfect Matchings. We now restrict to
graphs with Perfect Matchings. We show:

Theorem 5.9 Consider a graphG with a Perfect Match-

ing and an integerµ ≤
|V |
2 . Then,G admits a Defense-

Optimal Nash equilibriums whereSupport
s
(D) is a Perfect

Matching if and only if2µ divides|V |.

Theorem 5.9 will follow from Propositions 5.10 and 5.11.

Proposition 5.10 Assume a graphG with a Perfect Match-

ing and an integerµ ≤
|V |
2 such that2µ divides|V |. Then,

G admits a Defense-Optimal Nash equilibriums where
Supports

s
(D) is a Perfect Matching.

Proof: Consider a Perfect MatchingM . Construct a pro-
file s as follows:

• s is Attacker Symmetric Uniform and Attacker Fully
Mixed. So, for each attackerAi ∈ NA, for each vertex
v ∈ V , sAi

(v) = 1
|V |

andVPs(v) = ν
|V |

.

• PartitionM into µ subsets, each with
|V |
2µ edges; each

defender uses a uniform probability distribution over
each one subset. Thus,Support

s
(D) = M and each

edge is unidefender ins.

We now establish Conditions(1) and(2) in the characteri-
zation of Nash equilibria (Proposition 4.1).

• For Condition(1), fix any vertexv ∈ V . SinceM

is a (Perfect) Matching, there is a single edgee ∈
Edges

s
(v). Sincee is unidefender (say by defender

Di), it follows that Ps(Hit(v)) = Ps(Hit(Di, v)) =
2µ
|V |

. Now, Condition(1) follows trivially.

• For Condition(2), consider any defenderDi ∈ ND.
Fix an edgee = (u, v) ∈ Support

s
(Di). Since each

edgee is unidefender, it follows thatProp
s
(Di, v) =

Prop
s
(Di, u) = 1. It follows that Prop

s
(Di, v) ·

VPs(v) + Prop
s
(Di, u) · VPs(u) = 2ν

|V |
. On the other

hand, fix any edgee′ = (v′, u′) 6∈ Support
s
(Di).

Since M is an Edge Cover, it follows that for the
vertex v′ (resp., vertexu′), there is a defenderDj

such thatv′ ∈ Vertices(Support
s
(Dj)) (resp.,u′ ∈

Vertices(Support
s
(Dj))). (Note thatDj 6= Di since

M is a Matching.) It follows thatProp
s
(Di, v

′) < 1
(resp., Prop

s
(Di, u

′) < 1). Thus, Prop
s
(Di, v

′) ·
VPs(v

′) + Prop
s
(Di, u

′) · VPs(u
′) < VPs(v

′) +

VPs(u
′) = 2ν

|V |
. Now, Condition(2) follows.

Hence, by Proposition 4.1,s is a Nash equilibrium. To
prove thats is Defense-Optimal, recall that for each ver-

tex v ∈ V , Ps(Hit(v)) =
2µ
|V |

. Hence,MinHits =
2µ
|V |

. By

Corollary 4.3, it follows thatDRs =
|V |
2µ .

Proposition 5.11 Assume a graphG with a Perfect Match-

ing and an integerµ ≤
|V |
2 such thatG admits a Defense-

Optimal Nash equilibriums whereSupports
s
(D) is a Per-

fect Matching. Then,2µ divides|V |.

Proof: Consider such a Nash equilibriums. Sinces is
Defense-Optimal, Corollary 4.3 implies thatMinHits =
2µ
|V |

. Consider any edgee = (u, v) ∈ Support
s
(D);

so, e ∈ Support
s
(Di) for some defenderDi ∈

ND. SinceSupport
s
(A) is a vertex Cover of the graph

G(Support
s
(D)), it follows thatv ∈ Support

s
(A) or u ∈

Support
s
(A) (or both). SinceSupport

s
(D) is a Perfect

Matching (and therefore an Edge Cover), there is at least
one defenderDk such thatv ∈ Verticess(Support

s
(Dk)).

Since s is Defense-Optimal, Proposition 5.1 implies
that there is at most one defenderDk such thatv ∈
Verticess(Support

s
(Dk)). It follows that there is exactly

one defenderDk such thatv ∈ Verticess(Support
s
(Dk)).

So, clearly,Dk isDi. SinceSupport
s
(D) is a Perfect Match-

ing, this implies thatPs(Hit(v)) = sDi
(e). We prove that

|Support
s
(Di)| =

|V |
2µ . Since|Support

s
(Di)| is an integer,

this implies that2µ divides|V |.

Note that Corollary 5.4 applies toall graphs, while Propo-
sition 5.11 applies only to graphs with a Perfect Matching.
However, the restriction of Corollary 5.4 to graphs with a
Perfect Matching doesnot imply Proposition 5.11unlessµ
is odd. (This is because2 divides |V | andµ divides |V |
imply together that2µ divides|V | exactly whenµ is odd.)

6 Many Defenders

We now consider the case ofmanydefenders, where
|V |
2 <

µ < β′(G). Note that in this case, a Defense-Optimal Nash

equilibrium has Defense-RatioDRs = max

{

1,
|V |
2µ

}

= 1.

Theorem 6.1 (Non-existence of Defense-Optimal)

Assume that
|V |
2 < µ < β′(G). Then, G admits no

Defense-Optimal Nash equilibrium.



Proof: Assume, by way of contradiction, thatG admits a
Defense-Optimal Nash equilibriums. So,DRs = 1. Corol-
lary 4.3 implies thatMinHits = 1. It follows that for each
vertexv ∈ V , Ps(Hit(v)) = 1; so, all vertices are maxhit.
So, fix a (maxhit) vertexv ∈ V . The expression

Ps(Hit(v)) =
∑

j∈[µ]

(−1)j−1
∑

D⊆ND||D|=j

∏

Dk∈D

Ps (Hits(Dk, v))

implies that there is at least one maxhitterDi ∈ ND (a de-
fenderDi such thatPs(Hit(Di, v)) = 1). There are two
cases for each maxhitterDi: (i) Di uses a pure strategy
(u, v), so that there are two verticesu, v ∈ Support

s
(Di)

such thatPs(Hit(Di, v)) = Ps(Hit(Di, u)) = 1, or (ii)
Di uses a mixed strategy, in which case there is asin-
gle vertexv ∈ Support

s
(Di) such thatPs(Hit(Di, v)) =

Ps(Hit(Di, u)) = 1.

Use s to construct a defender-pure profilet as fol-
lows: The pure strategy of each (multihitter or not) de-
fenderDk is some edge fromSupport

s
(Dk). Note that,

by construction oft, (1) Support
t
(D) ≤ µ, and (2) the

number of maxhit vertices ins is at most the number of
maxhit vertices int. Sinceµ < β

′

(G), (1) implies that
|Supports

t
(D)| < β′(G). So, there is some vertexv ∈ V

such thatPt(Hit(v)) = 0. It follows that the number of
maxhit vertices int is at most|V | − 1. By (2), it follows
that the number of maxhit vertices ins is at most|V | − 1.
A contradiction.

7 Too Many Defenders

We finally turn to the case oftoo manydefenders, where
µ ≥ β′(G). Note that, in this case, a Defense-Optimal Nash

equilibriums has Defense-RatioDRs = max

{

1,
|V |
2µ

}

≤

max

{

1,
|V |

2β′(G)

}

= 1 (since
|V |
2 ≤ β′(G) for every

graph G). For the analysis, we will use a special class of
profiles that we introduce. A profiles is balancedif there
is a constantc > 0 such that for each pair of a defender
Di ∈ ND and a vertexv ∈ V , Prop

s
(Di, v) · VPs(v) = c.

Clearly, in a balanced profile,(i) for each defenderDi and
each vertexv ∈ V , Prop

s
(Di, v) > 0; and(ii) for each ver-

texv ∈ V , VPs(v) > 0. From(i), it follows that the support
of each defender is an Edge Cover; note that this (necessary)
condition isstrongerthan the necessary condition in Propo-
sition 4.5. From(ii) , it follows that the supports of attack-
ers isV ; note that this (necessary) condition isweakerthan
the condition in the definition of an attacker fully mixed
profile. Note also that by definition, a balanced profile sat-
isfies Condition(2) in the characterization of Nash equi-
libria (Proposition 4.1). We have been unable to construct

mixedbalanced profiles for the general case. So, we fo-
cused on the special case of pure strategies. Adefender-
pure balancedprofile is a defender-pure profiles such that
there is a constantc > 0 such that for each vertexv ∈ V ,

VPs(v)
defenderss(v)

= c. We prove that that a defender-pure bal-

anced profile is a local maximizer for the Individual Profit
of each defender.

We will present polynomial time algorithms to compute
Defender-Pure Balanced Nash equilibria in two cases. Both
algorithms will rely on a polynomial time algorithm for
computing a Minimum Edge Cover.

Defender-Pure Balanced Nash Equilibria. We show:

Theorem 7.1 Assume thatµ ≥ β′(G). Then,G admits a
Defense-Optimal, Defender-Pure Nash equilibrium, which
can be computed in polynomial time.

To prove Theorem 7.1, we present a polynomial time
algorithm Defender-Pure&BalancedNE to compute a
Defender-Pure Balanced Nash equilibrium:

Algorithm Defender-Pure&BalancedNE
INPUT: A graphG(V, E) and a pair of integersν andµ such
thatβ′(G) ≤ µ.
OUTPUT:A Defender-Pure Balanced Nash equilibriums.

(1) Compute a Minimum Edge CoverEC = {(vi, ui) | i ∈
[β′(G)]}.

(2) For each i ∈ [µ], set sDi
:= (v

i modβ′(G)
,

u
i modβ′(G)

).

(3) Compute a solution{VP(vi) | i ∈ [|V |]} to the following
linear system:

(a) For each i ∈ [|V |],
VP(vi)

defenderss(vi)
=

VP(v1)
defenderss(v1)

; (b)
P

i∈[|V |] VPs(vi) = ν.

(4) Arbitrarily, assign probability distributions to the attackers
so that for eachvi ∈ V , VPs(vi) = VP(vi).

Pure Balanced Nash Equilibria. We now prove that
adding a further constraint to those in Theorem 7.1 allows
for a (Defense-Optimal)PureNash equilibrium.

Theorem 7.2 Assume thatµ ≥ β′(G) and 2µ dividesν.
Then,G admits a Defense-Optimal, Pure Nash equilibrium,
which can be computed in polynomial time.

To prove Theorem 7.2, we present a polynomial time algo-
rithm Defender-Pure&Balanced to compute a Pure Bal-
anced Nash equilibrium:



Algorithm Pure&BalancedNE
INPUT: A graph G(V, E) and integersµ and ν such that
β′(G) ≤ µ and ν

2 ≡ 0 (modµ).
OUTPUT: A Pure Balanced Nash equilibriums.

(1) Compute a Minimum Edge CoverEC = {(vi, ui) | i ∈
[β′(G)]}.

(2) For each i ∈ [µ], set sDi
:= (v

i modβ′(G)
,

u
i modβ′(G)

).

(3) Arbitrarily assign pure strategies to the attackers so that
for each vertexv ∈ V , VPs(v) = defenderss(v) · ν

2 µ
.

8 Replicated Defenders

We use an involved combinatorial analysis to prove:

Proposition 8.1 Consider an arbitrary Nash equilibriums
for the gameΠν,1(G). Then, there is a Defender Symmetric
Nash equilibriumt for the gameΠν,µ with MinHitt = 1 −
(1 − MinHits)

µ.

By Corollary 4.3, Proposition 8.1 immediately implies:

Theorem 8.2 (From Single to Symmetric Defenders)
Consider an arbitrary Nash equilibriums for the game
Πν,1(G). Then, there is a Defender Symmetric Nash equi-
librium t for the gameΠν,µ(G) with Defense-RatioDRt =

1

1−(1− 1

DRs
)

µ .

It is simple to see that in the setting of Theorem 8.2,DRt ≥
DRs

µ
. (This should be expected since otherwise the lower

bound in Lemma 4.4 could be violated by choosings to be
a Perfect Matching Nash equilibrium [9] forΠν,1(G) with

DRs =
|V |
2 .)

References

[1] E. Anshelevich, A. Dasgupta, J. Kleinberg,́E. Tardos,
T. Wexler and T. Roughgarden, “The Price of Stability for
Network Design with Fair Cost Allocation,”Proceedings of
the 45th Annual IEEE Symposium on Foundations of Com-
puter Science,pp. 295–304, 2004.

[2] J.-M. Bourjolly and W. R. Pulleyblank, “K̈onig-Egerv́ary
Graphs, 2-Bicritical Graphs and Fractional Matchings,”Dis-
crete Applied Mathematics,Vol. 24, No. 1, pp. 63–82, 1989.

[3] J. Edmonds,Paths, Trees and Flowers,Canadian Journal of
Mathematics, Vol. 17, pp. 449–467 1965.

[4] M. R. Garey and D. S. Johnson,Computers and Intractabil-
ity: A Guide to the Theory ofNP-Completeness, W. H. Free-
man and Co., 1979.

[5] M. Gelastou, M. Mavronicolas, V. Papadopoulou, A. Philip-
pou and P. Spirakis, “The Power of the Defender”,CD-ROM
Proceedings of the 2nd International Workshop on Incentive-
Based Computing, 2006.

[6] E. Koutsoupias and C. H. Papadimitriou, “Worst-Case Equi-
libria,” Proceedings of the 16th International Symposium
on Theoretical Aspects of Computer Science,pp. 404–413,
Vol. 1563,LNCS, 1999.

[7] A. S. LaPaugh and C. H. Papadimitriou, “The Even-Path
Problem for Graphs and Digraphs,”Networks, Vol. 14 No.
4, pp. 507–513, 1984.

[8] T. Markham and C. Payne, “Security at the Network Edge:
A Distributed Firewall Architecture,”Proceedings of the 2nd
DARPA Information Survivability Conference and Exposi-
tion, Vol. 1, pp. 279-286, 2001.

[9] M. Mavronicolas, L. Michael, V. Papadopoulou, A. Philip-
pou and P. Spirakis, “The Price of Defense,”Proceedings of
the 31st International Symposium on Mathematical Founda-
tions of Computer Science,pp. 717–728, Vol. 4162,LNCS,
2006.

[10] M. Mavronicolas, V. Papadopoulou, G. Persiano, A. Philip-
pou and P. Spirakis, “The Price of Defense and Fractional
Matchings,” Proceedings of the 8th International Confer-
ence on Distributed Computing and Networking,pp. 115–
126, Vol. 4308,LNCS, 2006.

[11] M. Mavronicolas, V. Papadopoulou, A. Philippou and P. Spi-
rakis, “A Graph-Theoretic Network Security Game,”Pro-
ceedings of the 1st International Workshop on Internet and
Network Economics,pp. 969–978, Vol. 3828,LNCS, 2005.

[12] M. Mavronicolas, V. Papadopoulou, A. Philippou and P. Spi-
rakis, “A Network Game with Attacker and Protector En-
tities,” Proceedings of the 16th Annual International Sym-
posium on Algorithms and Computation,pp. 288–297,
Vol. 3827,LNCS, 2005.

[13] J. F. Nash, “Equilibrium Points in N-Person Games”,Pro-
ceedings of the National Academy of Sciences of the United
States of America,pp. 48–49, Vol. 36, 1950.

[14] J. F. Nash, “Non-Cooperative Games,”Annals of Mathemat-
ics,Vol. 54, pp. 286–295, 1951.

[15] E. R. Scheinerman and D. H. Ullman,Fractional Graph The-
ory, John Wiley & Sons, 1997.

[16] D. B. West,Introduction to Graph Theory,Prentice Hall, sec-
ond edition, 2001.


