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Abstract

Consider an information network with harmful procedures called attackers (e.g., viruses);
each attacker uses a probability distribution to choose a node of the network to damage. Oppo-
nent to the attackers is the system protector scanning and cleaning from attackers some part of
the network (e.g., an edge or a path), which it chooses independently using another probability
distribution. Each attacker wishes to maximize the probability of escaping its cleaning by the
system protector; towards a conflicting objective, the system protector aims at maximizing the
expected number of cleaned attackers.

We model this network scenario as a non-cooperative strategic game on graphs. We focus on
the special case where the protector chooses a single edge. We are interested in the associated
Nash equilibria, where no network entity can unilaterally improve its local objective. We obtain
the following results:

• No instance of the game possesses a pure Nash equilibrium.

• Every mixed Nash equilibrium enjoys a graph-theoretic structure, which enables a (typi-
cally exponential) algorithm to compute it.

• We coin a natural subclass of mixed Nash equilibria, which we call matching Nash equi-
libria, for this game on graphs. Matching Nash equilibria are defined using structural
parameters of graphs, such as independent sets and matchings.

– We derive a characterization of graphs possessing matching Nash equilibria. The char-
acterization enables a linear time algorithm to compute a matching Nash equilibrium
on any such graph with a given independent set and vertex cover.

– Bipartite graphs are shown to satisfy the characterization. So, using a polynomial-
time algorithm to compute a perfect matching in a bipartite graph, we obtain, as
our main result, an efficient graph-theoretic algorithm to compute a matching Nash
equilibrium on any instance of the game with a bipartite graph.

Throughout the paper, some missing proofs can be found in the attached Appendix.
It may be read at the discretion of the Program Committee.
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1 Introduction

Motivation and Framework. Consider an information network represented by an undirected
graph. The nodes of the network are insecure and vulnerable to infection. A system protector (e.g.,
antivirus software) is available in the system; however, its capabilities are limited. The system
protector can guarantee safety only to a small part of the network, such as a path or even a
single edge, which it may choose using a probability distribution. A collection of attackers (e.g.,
viruses or Trojan horses) are also present in the network. Each attacker chooses (via a separate
probability distribution) a node of the network; the node is harmed unless it is covered by the
system protector. Apparently, the attackers and the system protector have conflicting objectives.
The system protector seeks to protect the network as much as possible, while the attackers wish to
avoid being caught by the network protector so that they be able to damage the network. Thus,
the system protector seeks to maximize the expected number of attackers it catches, while each
attacker seeks to maximize the probability it escapes from the system protector.

Naturally, we model this scenario as a strategic game with two kinds of players: the vertex
players representing the attackers, and the edge player representing the system protector. The
Individual Cost of each player is the quantity to be maximized by the corresponding entity. We are
interested in the Nash equilibria [6, 7] associated with this game, where no player can unilaterally
improve its Individual Cost by switching to a more advantageous probability distribution. We focus
on the simplest case where the edge player chooses a singe edge.

Summary of Results. Our results are summarized as follows:

• We prove that no instance of the game has a pure Nash equilibrium (pure NE) (Theorem
3.1).

• We then proceed to study mixed Nash equilibria (mixed NE). We provide a graph-theoretic
characterization of mixed NE (Theorem 3.2). Roughly speaking, the characterization yields
that the support of the edge player and the vertex players are an edge cover and a vertex
cover of the graph and an induced subgraph of the graph, respectively. Given the supports,
the characterization provides a system of equalities and inequalities to be satisfied by the
probabilities of the players. Unfortunately, this characterization only implies an exponential
time algorithm for the general case.

• We introduce matching Nash equilibria, which are a natural subclass of mixed Nash equilibria
with a graph-theoretic definition (Definition 4.1). Roughly speaking, the supports of vertex
players in a matching Nash equilibrium form together an independent set of the graph, while
each vertex in the supports of the vertex players is incident to only one edge from the support
of the edge player.

• We provide a characterization of graphs admitting a matching Nash equilibrium (Theorem
4.3). We prove that a matching Nash equilibrium can be computed in linear time for any
graph satisfying the characterization once a suitable independent set is given for the graph.

• We finally consider bipartite graphs for which we show that they satisfy the characterization
of matching Nash equilibria; hence, they always have one (Theorem 5.3). More importantly,
we prove that a matching Nash equilibrium can be computed in polynomial time for bipartite
graphs (Theorem 5.4).

Significance. Our work joins the booming area of Algorithmic Game Theory. Our work is the
first1 to model realistic scenarios about infected networks as a strategic game and study its associ-

1To the best of our knowledge, [1] is a single exception. It considers inoculation strategies for victims of viruses
and establishes connections with variants of the Graph Partition problem.
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ated Nash equilibria. Our results contribute towards answering the general question of Papadim-
itriou [10] about the complexity of Nash equilibria for our special game. Our results highlight a
fruitful interaction between Game Theory and Graph Theory. We believe that our matching Nash
equilibria (and extensions of them) will find further applications in other network games and estab-
lish themselves as a candidate Nash equilibrium for polynomial time computation in other settings
as well.

2 Framework

Throughout, we consider an undirected graph G(V, E), with |V (G)| = ν and |E(G)| = µ. Given
a set of vertices X ⊆ V , the graph G\X is obtained by removing from G all vertices of X and
their incident edges. A graph H, is an induced subgraph of G, if V (H) ⊆ V (G) and (u, v) ∈ E(H),
whenever (u, v) ∈ E(G). Denote ∆(G) the maximum degree of the graph G. For any vertex
v ∈ V (G), denote Neigh(v) = {u : (u, v) ∈ E(G)}, the set of neighboring vertices of v. For a set
of vertices X ⊆ V , denote Neigh(X) = {u �∈ X : (u, v) ∈ E(G) for some v ∈ X}. For all above
properties of a graph G, when no confusion raises, we omit G.

2.1 The Model

An information network is represented as an undirected graph G(V, E). The vertices represent the
network hosts and the edges represent the communication links. We define a non-cooperative game
Π(G) = 〈N , {Si}i∈N , {IC}i∈N 〉 as follows:

• The set of players is N = NV P ∪NEP , where NV P is a finite set of vertex players vpi, i ≥ 1,
and NEP is a singleton set of an edge player ep.

• The strategy set Si of each player vpi, i ∈ NV P , is V ; the strategy set Sep of the player ep is

E. Thus, the strategy set S of the game is
(

×
i ∈ NV P

Si

)
× Sep = V |Nep| × E.

• Take any strategy profile �s = 〈s1, . . . , s|NV P |, Sep〉 ∈ S, also called a configuration.

– The Individual Cost of vertex player vpi is a function ICi : S → {0, 1} such that ICi(�s) ={
0, si ∈ Sep

1, si �∈ Sep
; intuitively, vpi receives 1 if it is not caught by the edge player, and 0

otherwise.

– The Individual Cost of the edge player ep is a function ICep : S → N such that ICep(�s) =
|{si : si ∈ Sep}|.

The configuration �s is a pure Nash equilibrium [6, 7] (abbreviated as pure NE) if for each player
i ∈ N , it minimizes ICi over all configurations �t that differ from �s only with respect to the strategy
of player i.

A mixed strategy for player i ∈ N is a probability distribution over its strategy set Si; thus,
a mixed strategy for a vertex player (resp., edge player) is a probability distribution over vertices
(resp., over edges) of G. A mixed strategy profile �s is a collection of mixed strategies, one for each
player. Denote P�s(ep, e) the probability that edge player ep chooses edge e ∈ E(G) in �s; denote
P�s(vpi, v) the probability that vertex player vpi chooses vertex v ∈ V in�s. Note

∑
v∈V P�s(vpi, v) = 1

for each vertex player vpi; similarly,
∑

e∈E P�s(ep, e) = 1. Denote P�s(V P, v) =
∑

i∈NV P
P�s(vpi, v)

the probability that vertex v is chosen by some vertex player in �s.

The support of a player i ∈ N in the configuration�s, denoted D�s(i), is the set of pure strategies in
its strategy set to which i assigns strictly positive probability in�s. Denote D�s(V P ) =

⋃
i∈NV P

D�s(i);
so, D�s(V P ) contains all pure strategies (that is, vertices) to which some vertex player assigns strictly
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positive probability. Let also ENeigh�s(v) = {(u, v)E : (u, v) ∈ D�s(ep)}; that is ENeigh�s(v)
contains all edges incident to v that are included in the support of the edge player in �s.

A mixed strategic profile �s induces an Expected Individual Cost ICi for each player i ∈ N , which
is the expectation, according to �s, of its corresponding Individual Cost (defined previously for pure
strategy profiles). The mixed strategy profile �s is a mixed Nash equilibrium [6, 7] (abbreviated as
mixed NE) if for each player i ∈ N , it minimizes ICi over all configurations �t that differ from �s only
with respect to the mixed strategy of player i.

For the rest of this section, fix a mixed strategy profile �s. For each vertex v ∈ V , denote
Hit(v) the event that the edge player hits vertex v. So, the probability (according to �s) of
Hit(v) is P�s(Hit(v)) =

∑
e∈ENeigh(v) P�s(ep, e). Define the minimum hitting probability P�s as

minv P�s(Hit(v)). For each vertex v ∈ V , denote m�s(v) the expected number of vertex players
choosing v (according to �s). For each edge e = (u, v) ∈ E, denote m�s(e) the expected number of
vertex players choosing either u or v; so, m�s(e) = m�s(u) + m�s(v). It is easy to see that for each
vertex v ∈ V , m�s(v) =

∑
i∈NV P

P�s(vpi, v). Define the maximum expected number of vertex players
choosing e in �s as maxe m�s(e).

We proceed to calculate the Expected Individual Cost. Clearly, for the vertex player vpi ∈ NV P ,

ICi(�s) =
∑

v∈V (G)

P�s(vpi, v) · (1 − P�s(Hit(v)) =
∑

v∈V (G)


P�s(vpi, v) · (1 −

∑
e∈ENeigh(v)

P�s(ep, e)


 (1)

For the edge player ep,

ICep(�s) =
∑

e=(u,v)∈E(G)

P�s(ep, e) · (m�s(u) + m�s(v)) =
∑

e=(u,v)∈E(G)


P�s(ep, e) · (

∑
i∈NV P

P�s(vpi, u) + P�s(vi, v))


 (2)

2.2 Background from Graph Theory

Throughout this section, we consider the (undirected) graph G = G(V, E).
G(V, E) is bipartite if its vertex set V can be partitioned as V = V1 ∪ V2 such that each edge
e = (u, v) ∈ E has one of its vertices in V1 and the other in V2. Such a graph is often referred to
as a V1, V2-bigraph. Fix a set of vertices S ⊆ V . The graph G is an S-expander if for every set
X ⊆ S, |X| ≤ |NeighG(X)|.

A set M ⊆ E is a matching of G if no two edges in M share a vertex. Given a matching M ,
say that set S ⊆ V is matched in M if for every vertex v ∈ S, there is an edge (v, u) ∈∈ M . The
size of a maximum matching of G is denoted by α′(G). A vertex cover of G is a set V ′ ⊆ V such
that for every edge (u, v) ∈ E either u ∈ V ′ or v ∈ V ′. The size of a minimum vertex cover of G
is denoted as β(G). An edge cover of G is a set E′ ⊆ E such that for every vertex v ∈ V , there is
an edge (v, u) ∈ E′. Say that an edge (u, v) ∈ E (resp., a vertex v ∈ V ) is covered by the vertex
cover V ′ (resp., the edge cover E′) if either u ∈ V ′ or v ∈ V ′ (resp., if there is an edge (u, v) ∈ E′).
Otherwise, the edge (resp., the vertex) is not covered by the vertex cover (resp., the edge cover).
A set IS ⊆ V is an independent set of G if for all vertices u, v ∈ IS, (u, v) /∈ E. The size of a
maximum independent set of G is denoted as α(G). Clearly, IS ⊆ V is an independent set of G if
and only if the set V C = V \IS is a vertex cover of G.

We will use the following consequence of Hall’s Theorem [4] (see also [2], Chapter 6) on the
marriage problem.

Proposition 2.1 (Hall’s Theorem) A graph G has a matching M in which the vertex set X ⊆ V
is matched if and only if for each for each subset S ⊆ X, |N(S)| ≥ |S|.
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3 Nash Equilibria

For pure Nash Equilibria, we prove:

Theorem 3.1 If G contains more than one edges, then Π(G) has no pure Nash Equilibrium.

Proof. Consider any graph G with at least two edges and any configuration �s of Π(G). Let e the
edge selected by the e.p. in �s. Since G contains more than one edges, there exists an e′ ∈ E(G)
not selected by the e.p. in �s, such that e and e′ contain at least one different endpoint, assume
u. If there is at least one v.p. located on e, it will prefer to go to u so that not to get arrested
by the edge player and gain more. Thus, this case can not be a pure NE for the vertex players.
Otherwise, the edge e contains no vertex player. But in this case, the e.p. would like to change
current action and select another edge, where there is at least one vertex player, so that to gain
more. Thus, again this case can not be a pure NE, for the e.p. this time. Since always in any case,
one of the two kinds of players is not satisfied by �s, �s is not a pure NE.

We continue with a characterization of mixed Nash equilibria:

Theorem 3.2 (Characterization of Mixed NE) A mixed strategy profile �s is a Nash equilibrium
for any Π(G) if and only if:

1. D�s(ep) is an edge cover of G and D�s(V P ) is a vertex cover of the graph induced by D�s(ep).

2. The probability distribution of the e.p. over E, is such that, (a) P�s(Hit(v)) = P�s(Hit(u)) =
minv P�s(Hit(v)), ∀ u, v ∈ D�s(V P ), (b) P�s(Hit(v)) ≤ P�s(Hit(u)), for any v, u ∈ V , v ∈
D�s(V P ), u /∈ D�s(V P ) and (c)

∑
e∈D�s(ep) P�s(ep, e) = 1.

3. The probability distributions of the vertex players over V are such that, (a) m�s(e1) = m�s(e2) =
maxe m�s(e), ∀ e1 = (u1, v1), e2 = (u2, v2) ∈ D�s(ep), (b) m�s(e1) ≥ m�s(e2), ∀ e1 =
(u1, v1), e2 = (u2, v2) ∈ E, e1 ∈ D�s(ep), e2 �∈ D�s(ep) and (c)

∑
v∈V (D�s(ep)) m�s(v) = n.

Remark. Note that the characterization implies no polynomial time algorithm for computing a
mixed Nash equilibrium (unless P = NP), since it involves solving a mixed integer programming
problem.

4 Matching Nash Equilibria

We introduce a family of configurations, called matching, which (as we show) can lead to mixed
NE for the problem considered, called matching mixed NE on any instance of the problem. We
provide an if and only if characterization for the existence of a matching mixed NE. Using this
characterization, we provide a polynomial time algorithm for the computation of matching Nash
equilibria for any instance Π(G) of the problem, where the graph G satisfies the characterization.
We remark applicability of the algorithm for a quite broad family of graphs, that of bipartite graphs
(section 5).

The obvious difficulty of solving the system of Theorem 3.2 directs us in trying to investigate the
existence of some matching, i.e. polynomially computable, solutions of the system, corresponding to
mixed NE of the game. To which configuration should we consider as matching or easy to compute,
we utilized the following way of thinking. A first observation is that finding a configuration that
satisfies condition 2 of Theorem 3.2 seems the most difficult constrain (among the three conditions)
to be fulfilled. This is so because it contains the largest number of variables among the three
conditions (P�s(ep, e), ∀ e ∈ E) and each equation of it might involve up to ∆(G) such variables.
Thus, let us consider the subtask of the system of Theorem 3.2 of computing function P�s(·), ∀e ∈ E.
Consider the case where the equations of condition 2.(a) are independent, that is for each variable e,
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P�s(ep, e) appears in only one equation of condition 2.(a). Obviously, in this case the task becomes
less difficult. Note that in order these equations to be independent , D�s(V P ) should constitute
an independent set of G. Moreover, when each vertex of D�s(V P ) is incident only in one edge of
D�s(ep), then each equation of condition 2.(a) contains only one variable, making the satisfaction
of the condition even less difficult. Based on these thoughts, we define the following family of
configurations which, as we show, can lead to mixed NE for the game. In the sequel, we investigate
their existence and their polynomial time computation.

Definition 4.1 A matching configuration �s of Π(G) satisfies: (1) D�s(V P ) is an independent
set of G and (2) each vertex v of D�s(V P ) is incident to only one edge of D�s(ep).

Claim 4.1 For any graph G, if in Π(G) there exists a matching configuration which additionally
satisfies condition 1 of Theorem 3.2, then there exists probability distributions for the vertex players
and the e.p. such that the resulting configuration is a mixed Nash equilibrium for Π(G). Also, these
distributions can be computed in polynomial time.

Proof. Consider any configuration �s as stated by the Claim (assuming that there exists one) and
the following probability distributions of the vertex players and the e.p. on �s:

e.p. :∀ e ∈ D�s(ep), P�s(ep, e) = 1/|D�s(ep)| and ∀ e′ ∈ E, e′ /∈ D�s(ep), P�s(ep, e′) = 0 (3)

v.pi :∀ i ∈ NV P , ∀ v ∈ D�s(V P ), P�s(vpi, v) :=
1

|D�s(V P )| and ∀ u ∈ V, u /∈ D�s(V P ), P�s(vpi, u) = 0 (4)

Proposition 4.2

∀ v ∈ D�s(V P ), m�s(v) =
n

|D�s(V P )| and ∀ u ∈ V, u �∈ D�s(V P ), m�s(u) = 0

Proof.

∀ v ∈ D�s(V P ), m�s(v) =
∑

i∈NV P

P�s(vpi, v) =
∑

i∈NV P

1
|D�s(V P )| =

n

|D�s(V P )|
by equation (4). In contrast, for any other vertex u ∈ V , u �∈ D�s(V P ), by the same equation,
m�s(u) = 0.

We show that �s satisfies all conditions of Theorem 3.2, thus it is a mixed NE.

1.: By assumption.

2.(a): P�s(Hit(v)) = 1
|D�s(ep)| , ∀ v ∈ D�s(V P ), by condition (2) of the definition of a matching

configuration and equation (3) above.

2.(b): P�s(Hit(u)) ≥ 1
|D�s(ep)| = P�s(Hit(v)), ∀ u /∈ D�s(V P ) and v ∈ D�s(V P ), because D�s(ep) is

an edge cover of G (by assumption), recalling condition 2(a) proved above and equation (3) above.

2.(c):
∑

e∈D�s(ep) P�s(ep, e) =
∑

e∈D�s(ep)
1

|D�s(ep)| = 1.

3.(a): m�s(e1) = m�s(v1) + m�s(u1) = 0 + n
|D�s(V P )| = n

|D�s(V P )| , ∀ e1 = (u1, v1) ∈ D�s(ep), because
Dep is an edge cover of G (by assumption), Dvp is an independent set of G (condition (1) of the
definition of a matching configuration) and recalling Proposition 4.2 above.

3.(b): m�s(e2) = m�s(v2) + m�s(u2) = 0 + n
|D�s(V P )| , ∀ e2 = (v2, u2) ∈ E, /∈ D�s(ep), using the

same arguments as in 3.(a). Combining this with the condition 3.(a) proved above, we get that
m�s(e1) = m�s(e2), ∀ e1 = (u1, v1) ∈ D�s(ep), e2 = (u2, v2) ∈ E, e2 �∈ D�s(ep).

3.(c): Since Devp(�s) is an edge cover of G (by assumption) and by Proposition 4.2, we have∑
v∈V (D�s(ep)) m�s(v) =

∑
v∈V

n
|D�s(V P )| = |D�s(V P )| · n

|D�s(V P )| = n.

Note that the probability distributions for the vertex players and the e.p. can be computed in
polynomial time.
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Definition 4.2 A matching configuration which additionally satisfies condition 1 of Theorem 3.2
is called a matching mixed NE.

We proceed to characterize graphs that admit matching Nash equilibria.

Theorem 4.3 For any graph G, Π(G) contains a matching mixed Nash equilibrium if and only if
the vertices of the graph G can be partitioned into two sets IS, V C (V C∪IS = V and V C∩IS = ∅),
such that IS is an independent set of G (equivalently, V C is a vertex cover of the graph) and G is
a V C-expander graph.

Proof. We first prove that if G has an independent set IS and the graph G is a V C-expander
graph, where V C = V \IS, then Π(G) contains a matching mixed NE. By the definition of a V C-
expander graph, it holds that N(V C ′) ≥ V C ′, for all V C ′ ⊆ V C. Thus, by Hall’s Theorem 2.1, G
has a matching M such that each vertex of V C is matched into a vertex of V \V C in M . Now, since
M is a matching, for any vertex u ∈ V C, ∃ e = (u, v) ∈ M , v ∈ V \V C = IS. Partition IS into two
sets IS1, IS2, where set IS1 consists of vertices v ∈ IS for which there exists an e = (u, v) ∈ M ,
u ∈ V C. Let IS2 the remaining vertices of the set, i.e. IS2 = IS\IS1 and ∀ v ∈ IS2 :� ∃ (u, v) ∈ M ,
u ∈ V C.

Now, recall that there is no edge between any two vertices of set IS, since it is independent
set, by assumption. Henceforth, since G is a connected graph, ∀ u ∈ IS2 ⊆ IS, there exists
e = (u, v) ∈ E. Note also that for each such edge e = (u, v), v ∈ V \IS = V C. Now, construct
set M consisting of all those edges as follows: set initially M := ∅ and ∀u ∈ IS2, iteratively set
M := M ∪(u, v), for any (u, v) ∈ E, v ∈ V C. Note that each vertex v ∈ V C is considered only once
in the construction of set M . Note that M1 ∩ M = ∅. We construct the following configuration �s
of Π(G): Set D�s(V P ) = IS and D�s(ep) = M ∪ M1.

We first show that that �s is a matching configuration. Condition (1) is fulfilled because IS is an
independent set. We show that condition (2) of a matching configuration is fulfilled. Each vertex
of set IS belongs either to IS1 or to IS2. By definition, each vertex of IS1 is incident to only one
edge of M and each vertex of IS2 is incident to no edge in M and is incident to only one edge of
M1. Thus, the condition (2) of a matching configuration holds.

We next show that condition 1 of Theorem 3.2 is satisfied by �s. We first show that D�s(ep) is
an edge cover of G. This is true because (i) set M ⊆ D�s(ep) covers all vertices of set V C and IS1,
by its construction and (ii) set M1 ⊆ D�s(ep) covers all vertices of set IS2 which are the remaining
vertices of G not covered by set M , also by its construction. Thus, D�s(ep) is an edge cover of the
graph G. We next show that D�s(V P ) is a vertex cover of the subgraph of G induced by set D�s(ep).
By the definition of sets IS1, IS2 ⊆ IS, any edge e ∈ M is covered by a vertex of set IS1 and
each edge e ∈ M1 is covered by a vertex of set IS2. Henceforth, each edge of set D�s(ep) is covered
by set IS, henceforth the set is a vertex cover of the graph induced by D�s(ep). We conclude that
condition 1 of Theorem 3.2 is satisfied by �s. Henceforth, by Claim 4.1, it can lead to a matching
mixed NE of Π(G).

We proceed to show that if G contains a matching mixed NE, assume �s, then G has an in-
dependent set IS and the graph G is a V C-expander graph, where V C = V \IS. Define sets
IS = D�s(V P ) and V C = V \IS. We show that these sets satisfy the above requirements. Note
first that, set IS is an independent of G since D�s(V P ) is an independent set of G by condition (1)
of the definition of a matching configuration.

We next show G contains a matching M such that each vertex of set V C is matched into a vertex
of V \V C in M . Henceforth, by Hall’s Theorem 2.1, we get that N(V C ′) ≥ V C ′, for all V C ′ ⊆ V C
and so G is a V C-expander. Since D�s(ep) is an edge cover of G (condition 1 of a mixed NE of
Theorem 3.2), for each v ∈ V C, ∃ e = (u, v) ∈ D�s(ep). Note that, for this edge (e = (u, v)), v ∈ IS,
since otherwise IS would not be a vertex cover of D�s(ep) (Condition 1 of a mixed NE). Moreover,
by condition (2) of a matching mixed NE, any vertex of IS has only one incident to it edge in
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Figure 1: Examples of graphs (a) with and (b) without matching mixed Nash equilibrium.

D�s(ep). Thus, we conclude that for each v ∈ V C, vertex u ∈ IS, such that e = (u, v) ∈ D�s(ep), has
no other edge than e incident to it in D�s(ep). Now, construct set M consisting of all those edges
as follows: set initially M := ∅ and ∀u ∈ IS2, iteratively set M := M ∪ (u, v), for any (u, v) ∈ E,
v ∈ V C. Note that each vertex v ∈ V C is considered only once in the construction of set M . Thus,
set M is a matching and moreover each vertex of set V C is matched into a vertex of V C\V in M ,
by its construction. Summing up, we get that IS is an independent set of G and the graph G is a
V C-expander graph, where V C = V \IS, as required.

An example of a graph G with a matching mixed NE �s is illustrated in Figure 1. Set D�s(ep) is
denoted by bold edges and set D�s(V P )(= IS) (as in Theorem 4.3) by vertices with an asterisk, ∗.
We remark that not all graphs G have a matching mixed NE; any odd cycle is such graph; this is
so because for every edge cover EC of the graph (corresponding to D�s(ep)), there is no set V C ⊆ V
(corresponding to D�s(V P )) such that V C is a vertex cover of the graph induced by EC and V C
is also an independent set of G. See Figure 1(b) for an example.

4.1 A Polynomial Time Algorithm

The previous Theorems and Lemmas enables us to develop a polynomial time algorithm for finding
matching mixed NE for any Π(G), where G is a graph satisfying the requirements of Theorem 4.3.
The Algorithm is described in pseudocode in Figure 2.

Theorem 4.4 (Correctness) Algorithm A computes a matching mixed Nash equilibrium for Π(G).

Proof.

Claim 4.5 Step 1 of Algorithm A terminates successfully in finite number of steps.

Proof. Consider any iteration of step 1.(b), which is the only non-trivial step of the procedure.
We prove that step 1.(b)ii. is always feasible as far as Unmatched �= ∅. Since in every iteration of
step 1.(b), set Unmatched is decreased by one, the loop of the step terminates in finite number of
iterations. The statement is proved by induction.

We first prove that initially step 1.(b)ii. is feasible. Note that initially, Unmatched = V C.
Recall since G is a V C-expander graph, it holds that |NG(S)| ≥ |S|, for all S ⊆ V C. Thus, by
Hall’s Theorem 2.1, ∃ v ∈ V \Unmatched such that (u, v) ∈ E. Henceforth, step 1.(b)ii. is
initially feasible.
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Algorithm A(Π(G), IS, V C)

Input: A game Π(G) and a partition of V (G) into sets IS, V C = V \IS, such that IS is an
independent set of G and G is a V C-expander graph.
Output: A mixed NE �s for Π(G).

1. Compute a set M ⊆ E, as follows:

(a) Initialization: Set M := ∅, Matched := ∅ (currently matched vertices in M),
Unmatched := V C (currently unmatched vertices in M vertices of V C), Unused := IS,
i := 1, Gi := G and M1 := ∅.

(b) While Unmatched �= ∅ Do:

i. Consider a u ∈ Unmatched and compute NGi(u).
ii. Find a v ∈ Unused such that (u, v) ∈ Ei. Set M := M ∪ (u, v), Unused :=

Unused\{v}.
iii. Prepare next iteration: Set i := i+1, Matched := Matched∪{u}, Unmatched :=

Unmatched\{u}, Gi := Gi−1\u\v.

2. Partition set IS into two sets IS1, IS2 as follows: IS1 := {u ∈ IS : ∃ (u, v) ∈ M} and
IS2 := IS\IS1. Note that IS2 := {u ∈ IS : � ∃ (u, v) ∈ M, v ∈ V C}.
Compute a set M1 as follows: ∀ u ∈ IS2, set M1 := M1 ∪ (u, v), for any (u, v) ∈ E, v ∈ V C.

3. Define a configuration �s with the following support: D�s(V P ) := IS, D�s(ep) := M ∪ M1.

4. Determine the probabilities distributions of the vertex players and the e.p. of configuration �s′

using equations (3) and (4) of Claim 4.1.

Figure 2: Algorithm A.

Consider any iteration i > 1 of step 1.(b)ii. of the algorithm. Denote as Unmatchedi,
Matchedi, Unusedi and Mi to be sets Unmatched, Matched, Unused and M respectively, of
iteration i of the step. Let also vertex ui ∈ Unmatchedi and vi ∈ Unusedi, the vertices added
to set Matched and removed from set Unused, respectively, of iteration i of the step. Assume,
by induction, |NGi(Unm)| ≥ |Unm|, for all Unm ⊆ Unmatchedi. Thus, by Hall’s Theorem 2.1,
∃ vi ∈ Vi\Unmatchedi = Unusedi such that (ui, vi) ∈ Ei. Henceforth, step 1.(b)ii. is feasible.

We prove that in the next iteration, i+1, of step 1.(b)ii., if Unmatched �= ∅, then |NGi+1(Unm)|
≥ |Unm|, for all Unm ⊆ Unmatchedi+1. Thus, by Hall’s Theorem 2.1, ∃vi+1 ∈ Vi+1\Unmatchedi+1 =
Unusedi+1 such that (ui+1, vi+1) ∈ Ei+1 and henceforth iteration i + 1 of step 1.(b)ii. would be
feasible. Note that Unmatchedi+1 = Unmatchedi\{ui} and NGi+1(Unmatchedi+1) =
NGi(Unmatchedi)\{vi}. Since, |NGi(Unm)| ≥ |Unm|, for all Unm ⊆ Unmatchedi, we get that
|NGi+1(Unm′)| ≥ |Unm′|, for all Unm′ = Unm\{ui} ⊆ Unmatchedi+1.

Finally, observe that set M computed by step 1 of the algorithm is a matching of G. This is true
because each vertex of V C is considered only once in the loop and each vertex v ∈ IS contributes
only to one edge (u, v) of set M and is then removed from G, by operation Unused := Unused\{v}
of step 1.(b)ii.. The successful termination of step 1. proved in Claim 4.5 guarantees that in the
constructed matching M , each vertex of set V C is matched into a vertex of IS in M .

Note that sets IS, M are the same as their corresponding sets in the proof of Theorem 4.3.
Furthermore, note the assignment for support of configuration �s of step 3 of the algorithm, is
equivalent to that of the configuration of Theorem 4.3. This, combined with the above observations
(on sets IS, M and M1 involved in the assignment) concludes that the configuration of Theorem
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4.3 has the same support as configuration �s of the algorithm.

Now, using the same arguments as in Theorem 4.3, we can prove that configuration�s constructed
here, is a matching configuration and also that condition 1 of a mixed NE of Theorem 3.2 is
satisfied in �s. Moreover, note that the probability distributions of the vertex players and the e.p.
of configuration �s here is the same as that of Claim 4.1. Henceforth, �s is matching mixed NE of Π.

Theorem 4.6 (Time Complexity) Algorithm A terminates in linear time O(µ).

Proof. Step 1: In any graph β(G) ≤ ν. Thus, step 1.(b) is iterated at most ν times. Since any
edge vertex of G has a degree at most ν − 1, steps 1.(b) i. and ii. can be accomplished in O(ν)
time. Thus, step 1 of the algorithm is finished in the same time (O(ν)). Steps 2, 3 and 4: They
take O(ν), O(µ) and O(µ) time, respectively. Summing up, we conclude that Algorithm A needs
O(µ) to be accomplished.

5 Bipartite Graphs

In this section we investigate the existence and polynomial time computation of matching mixed
Nash equilibria for any Π(G), for which G is a bipartite graph. We first provide some useful
Lemmas and Theorems on important properties of bipartite graphs. Using them, we prove that
in any bipartite graph G, Π(G) always contains a matching mixed NE. Using these results, in the
sequel, we show that Algorithm A (section 4) can apply on bipartite graphs, providing a polynomial
time algorithm for computing such an equilibrium on Π(G).

5.1 Existence

Lemma 5.1 In any bipartite graph G there exists a matching M and a vertex cover V C such that
(1) every edge in M contains exactly one vertex of V C and (2) every vertex in V C is contained
in exactly one edge of M .

Proof. Let X, Y the bipartition of the bipartite graph G. Consider any minimum vertex cover of
the graph G, V C. We are going to construct a matching M of G so that conditions (1) and (2) of
the Lemma hold. Let R the vertices of V C contained in set X, i.e. R = V C ∩X and T the vertices
of V C contained in set Y , i.e. T = V C ∩ Y . Note that V C = R ∪ T . Let H and H ′ the subgraphs
of G induced by R∪ (Y − T ) and T ∪ (X −R), respectively. We are going to show that G contains
a matching in M as required by the Lemma.

Since R ∪ T is a vertex cover, G has no edge from Y − T to X − R. We show that for each
S ⊆ R, NH(S) ⊆ Y − T . If |NH(S)| < |S|, then we can substitute NH(S) for S in V C to obtain
a smallest vertex cover (∗1). This is true because (i) NH(S) covers all edges incident to S that are
not covered by T and (ii) since G is a bipartite graph there are no edges between the vertices of
set S, so that a possible substitute of set S do not need to cover any such edge.

Thus, |NH(S)| ≥ |S|, for all S ⊆ R. By Hall’s Theorem (Theorem 2.1), H has a matching MH

such that each vertex of R is matched in MH . Using similar arguments for set T , we can prove that
for each S′ ⊆ T , |NH′(S′)| ≥ |S′|. Henceforth, H ′ has a matching MH′ such that each vertex of T
is matched in MH′ . Now define M = MH ∪ MH′ . Since each H, H ′ is an induced subgraph of G
and the two subgraphs have disjoint sets of vertices, we get that M is matching of G and that each
vertex of V C = R ∪ T is matched in M . This result combined with the fact that M is a matching
of G concludes that condition (2) of the Lemma holds.

We proceed to prove condition (1). That is, to show that every edge of M contains exactly
one vertex of V C. Observe first that by the construction of set M , every edge of M contains at
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least one vertex of V C. Moreover, note that only one of the endpoints of the edge is contained
in M . This is true because by the construction of set M each edge of set M matches either (i) a
vertex of set R ⊆ X to a vertex of set (Y − T ) ⊆ Y or (ii) a vertex of set T ⊆ Y to a vertex of
set (X −R) ⊆ X. So, for any case exactly one of the two endpoints of the edge is not contained in
V C.

Remark. The statement of the Lemma does not hold for all graphs; any odd cycle graph is an
example of its falseness (See Figure 1(b)). The falseness of the Lemma in a general graph consists
in that the statement (∗1) in its proof is false; condition (ii) required (for proving ∗1) is not true.

Lemma 5.2 Any X, Y -bigraph graph G can be partitioned into two sets IS, V C (IS ∪ V C = V
and IS ∩ V C = ∅) such that V C is a vertex cover of G (equivalently, IS is an independent set of
G) and G is a V C-expander graph.

Proof. Let set V C of the Theorem to be a minimum vertex cover of G, as in Lemma 5.1. Consider
also a matching M of G from set V C to set V \V C = IS as in Lemma 5.1. Note that, IS = V \V C
is an independent set of G. By Lemma 5.1, each vertex v ∈ V C is matched into a vertex of IS in
M , that is, ∀ u ∈ V C, ∃ e = (u, v) ∈ M , v ∈ IS. Thus, by Hall’s Theorem 2.1, G is a V C-expander
graph. Thus, sets IS and V C satisfy the requirements of the Theorem.

Lemma 5.2 and Theorem 4.3 finally imply:

Theorem 5.3 Any Π(G) for which G is a connected bipartite graph, contains a matching mixed
Nash equilibrium.

5.2 Computation

Theorem 5.4 For any Π(G), for which G is a bipartite graph, a matching mixed Nash equilibrium
of Π(G) can be computed in polynomial time, max{O(µ

√
ν), O(ν2.5/

√
log ν)}, using Algorithm A.

Proof. We consider any set V C, as described Lemma 5.2, i.e. any minimum vertex cover of G
and compute also set V \V C = IS.

Proposition 5.5 A minimum vertex cover of a bipartite graph can be computed in polynomial
time, max{O(µ

√
ν), O(ν2.5/

√
log ν)}.

Proof. Recall König’s Theorem ([5], or [2]), stating that for any bipartite graph G, the maximum
size of a matching M in G is equal to the minimum size of a vertex cover V C of G. Actually the
Theorem suggests a polynomial time algorithm for computing a minimum vertex cover V C of G,
assuming that a maximum matching M of G is given (see also [2], Theorem 10.2.1, page 180). Such
an algorithm takes O(ν2.5/

√
log ν) time.

Thus, one can compute a maximum matching M of a bipartite graph G in polynomial time
(O(µ

√
ν)), using the algorithm of [3]. By the above observations on König’s Theorem ([5]), from

M we can compute a minimum vertex cover V C of the graph in additional time of O(ν2.5/
√

log ν).
Thus, the whole procedure of computing a minimum vertex cover of a bipartite graph G needs
max{O(µ

√
ν), O(ν2.5/

√
log ν)} time.

Thus, we can apply Algorithm A on Π(G) using those sets IS, V C, as input. By Theorem 4.6,
we get that the whole procedure takes time O(µ)+max{O(µ

√
ν), O(ν2.5/

√
log ν)} = max{O(µ

√
ν),

O(ν2.5/
√

log ν)}.
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APPENDIX

Proof of Theorem 3.2.

Claim 3.2.1 In any mixed NE �s∗, Dep(�s∗) is an edge cover of G of instance Π(G).

Proof. Assume the contrary. Let NC a set of vertices of G not covered by Dep(�s∗). Then,
∀ i ∈ NV P , Dvpi(�s

∗) ⊆ NC because these actions give to the v.p. zero probability to be catched
by the e.p.. But in such case, the e.p. would gain nothing, because there will be no v.p. on its
support, while it could select any other edge, where there is at least one v.p. (obviously such an
edge exists, because the vertex players have to be somewhere on V ) and gain more. Thus, this
strategy profile is not a mixed NE, a contradiction. Henceforth, the initial assumption is false.

Claim 3.2.2 In any mixed NE �s∗, Dvp(�s∗) is a vertex cover of the graph obtained by Dep(�s∗).

Proof. Assume the contrary. Let e = (u, v) ∈ Dep(�s∗) an edge not covered by Dvp(�s∗). Then, the
gain of the e.p. on e would be zero (since there is no v.p. on it). Thus, the e.p. should gain more if
moving the probability of choosing edge e to another edge for which at least one of its endpoints are
covered by Dvp(�s∗) (obviously such an edge exists, because the vertex players have to be somewhere
on V ). Thus, this strategy profile can not be a mixed NE, a contradiction, henceforth the initial
assumption is false.

Claim 3.2.3 In any mixed strategy profile �s∗ of Π(G),
∑

v∈V (D�s∗(ep)) m�s(v) = n.

Proof.
∑

v∈V (D�s∗(ep))

m�s∗(v) =
∑

v∈V (D�s∗(ep))

∑
i∈NV P

P�s(vpi, v) ⇔

=
∑

i∈NV P

∑
v∈V (D�s∗(ep))

P�s∗(vpi, v) =
∑

i∈NV P

∑
v∈V

P�s∗(vpi, v) (by Claim 3.2.1)

=
∑
v∈V

∑
i∈NV P

P�s∗(vpi, v) =
∑

i∈NV P

(1) = |NV P | = n

Next we prove that if �s is a mixed NE for Π(G) then conditions 1-3 hold. 1.: By Claims 3.2.1,
3.2.2. 2.(a): By eq. (1) and the basic game theory on Nash equilibria, for any two u, v ∈ D�s(V P ),
and any i ∈ NV P , ICi = 1 − P�s(Hit(v)) = 1 − P (hidu,�s). 2.(b): Again by basic game theory on
Nash equilibria, for any i ∈ NV P and any v ∈ D�s(V P ), u �∈ D�s(V P ) by eq. (1), 1 − P�s(Hit(v)) ≥
1−P (hidu,�s) and henceforth, P�s(Hit(v)) ≤ P (hidu,�s). 2.(c): obvious since P�s(ep) is a probability
distribution over E. 3.(a) and (b): by eq. (2) and basic game theory on Nash equilibria.

Next, we prove that if conditions 1-3 hold for a mixed strategy profile �s of Π(G) then �s is a
NE. Consider first the vertex players. For any vpi, by 2.(a), any v ∈ Dvpi(�s), has minimum hitting
probability in �s. Thus, any of these vertices is a best response ([8], chapter 3) choice for the vpi.
in �s. Thus, vpi is satisfied in �s. Next, consider the e.p.. By 3.(a) and 3.(b), any e ∈ D�s(ep), has
a maximum expected number of vertex players on it. Thus, e is a best response choice for ep in �s
and henceforth e is satisfied in �s.
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